
Scenario Mechanism in Agent-Oriented Programming ∗

Rui Shen, Ji Wang
National Laboratory for

Parallel and Distributed Processing
Changsha, 410073, China

shenrui98@yahoo.com, jiwang@mail.edu.cn

Hong Zhu
Department of Computing
Oxford Brookes University

Oxford, OX33 1HX, United Kingdom
hzhu@brookes.ac.uk

Abstract

Scenario has been used to describe agent behaviors in
the context of environment situations in the specification
languages for agent-based systems, such as SLABS. It be-
comes an important language facility in the declaration of
an agent for specifying its behaviors in its environment.
Therefore, towards agent-oriented programming, it is nec-
essary to introduce and implement scenario mechanism in
programming languages. This paper reports our attempts
to support the language facility from the view of program-
ming languages, and presents an approach to facilitating
the scenario mechanism in agent-oriented programming.
The basic idea is to extend object-oriented programming
language to support agent-oriented programming, where
Java is chosen as the base language. Firstly, the language
framework of agent-oriented programming, SLABSp is pre-
sented, mostly conforming to SLABS, whose syntax is ex-
tended based on Java. Scenario mechanism is introduced
as the new feature in the programming language. Secondly,
the underlying object models are defined to serve as the se-
mantics of the language, where agents are modeled by a
couple of objects. A compiler has been built to compile the
agent-oriented programs into Java. A running platform has
been constructed as the multi-agent runtime environment of
SLABSp.

1. Introduction

Since agent-oriented programming [6, 7, 8] was pre-
sented as a new paradigm, many attempts have been made
to develop actual, useful agent-oriented systems. It is de-
sired to develop agent-oriented programming languages as
well as programming environments [1, 5, 6].

∗Supported by the National Science Foundation of China under grant
No. 60233020 and 90104007, the National High Technology Development
863 Program of China under grant No. 2002AA116070.

Scenario [3, 9, 10, 12] has been used to describe the
agent behaviors in the context of environment situations in
the specification languages for agent-based systems, such
as SLABS [12]. As described by SLABS, a scenario is a
set of typical combinations of the behaviors and states of
related agents in the system. Scenarios can be used in mod-
eling agents’ behaviors of multi-agent systems. It becomes
an important language facility in the declaration of agents
for specifying their behaviors in the environment. However,
scenario facility has not been supported at the level of pro-
gramming languages. Due to the lack of facilities which
can clearly state how agents’ behaviors are related to their
environment (related agents), developing agent-oriented ap-
plications is still complicated and difficult. Therefore, it is
necessary to introduce and implement scenario mechanism
in programming languages.

This paper reports our attempts to support the language
facilities and features in SLABS from the view of program-
ming languages, and presents an approach to facilitating the
scenario mechanism in agent-oriented programming. The
basic idea is to support agent-oriented programming by
extending object-oriented programming languages, where
Java is chosen as the base language. As a result, a com-
piler is built to compile agent-oriented programs into Java.
A simple platform is constructed as the multi-agent runtime
environment.

The remainder of this paper is organized as follows. Sec-
tion 2 gives the overview of SLABS language. Section 3
defines the SLABSp language. Section 4 describes the im-
plementation of SLABSp, including the underlying object
model and patterns of the agent system empowered by sce-
nario mechanism. Section 5 reviews the related work on
agent-oriented programming. Section 6 concludes the pa-
per with a brief discussion of future work.

2. Overview of SLABS

SLABS is a model-based formal specification language
for multi-agent systems [12]. It integrates a number of novel

Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC’04)
1530-1362/04 $ 20.00 IEEE

language facilities to support the development of agent-
based systems. The set of language facilities includes a
modular structure suitable for the formal specification of
multi-agent systems, a scenario description mechanism for
defining agents’ behaviors in the context of environment sit-
uations, and a notion of caste as a collection of agents that
have the same behaviors and structural characteristics.

SLABS defines agents as encapsulations of data, opera-
tions and behavior rules, and each agent has its own rules
that govern its behavior. An agent can have ‘visible’ and
‘invisible’ data and operations to other agents.

A caste [11, 12, 13] is defined as a set of agents with the
same structural and behavioral characteristics. Similar to
the relation between objects and classes, agents are mem-
bers of castes, and inheritance relationships can be defined
between castes.

Since object can be regarded as a degenerate form of
agent, a multi-agent system is simply defined as a set of
agents [12]. The environment of an agent consists of a num-
ber of agents.

A scenario is a set of typical combinations of the behav-
iors of related agents in a multi-agent system, whose most
fundamental characteristic is to put events in the context of
the history of behavior. A basic form of scenario descrip-
tion is a set of patterns. Each pattern describes the behavior
of an agent in the environment by a sequence of observable
state changes and observable action invokings. The SLABS
syntax of scenarios [12] in EBNF is as follows.

Scenario ::=
Agent-Name: Pattern
| Arithmetic-Relation
| ∃[number] Agent-Var ∈ Caste-Name: Pattern
| ∀ Agent-Var ∈ Caste-Name: Pattern
| Scenario ∧ Scenario
| Scenario ∨ Scenario
| ¬ Scenario
| ‘(’ Scenario ‘)’

There are scenarios focused on a single agent, an arith-
metic relation expression, quantity expression about a caste,
compound of other scenarios, and bracketed scenarios. For
detail information about SLABS, please refer to [12].

3. SLABSp: agent-orient programming with
scenario

SLABSp is a programming language presented in this
paper for supporting SLABS, which includes the mecha-
nism to support scenarios in agent-oriented programming.
Namely, we intend to make scenario a programming lan-
guage level mechanism. In this section, we sketch the lan-
guage SLABSp.

The design of SLABSp has been influenced by SLABS
and Java. Firstly, because the concept of scenario is not
isolated and is a part of behavior rules, it needs the related
concepts such as caste, agent, state, action, and behavior
rule, as described by SLABS. On the other hand, SLABSp
embeds ‘agent’ description mechanisms in Java program-
ming language. As an experimental language, it is hoped
that SLABSp is simple enough to illustrate how scenario
mechanism can be applied and implemented.

The structure of agent/caste is shown in Figure 1. Agent
and caste have states, actions and behavior rules. An agent
has a copy of elements from the castes they join. The en-
vironment defines the set of agents in the system that can
affect agent’s behavior.

Agent/Caste

Java Class Library

ActionActionAction

StateStateState

Behavior RuleBehavior RuleBehavior Rule

Figure 1. Structure of an agent/caste.

An example program of SLABSp is given in Figure 2.
It’s a caste named Worker, with one integer state (flag), two
actions (sleep and work), and one behavior rule named init

which is executed only once when agents of this caste start
with the help of the state flag.

When state flag is 0, behavior rule init will be executed,
i.e. set state flag to 1 and do action sleep. So behavior rule
init will be executed only once at the beginning. Scenarios
can be specified in the ‘while’ statement at the right portion
of Figure 2, such as the following scenario which will be
satisfied when all agents of caste Worker take action work

after action sleep:

for all Worker: [sleep(), work()]

Corresponding to the SLABS language, the EBNF defi-
nition of the syntax elements in SLABSp is given below.

(a) Agent and Caste. Each of them has a name, some
elements (state, action and behavior rule), and can join sev-
eral castes. When an agent joins a caste, it will copy all
elements of the caste, including the states, actions, and be-
havior rules. Currently, when multiple castes are joined,
they can not have elements of one type with the same name.

Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC’04)
1530-1362/04 $ 20.00 IEEE

behavior init(){

do{

state flag() = 1;

action sleep();

}

}when{

[! state flag() == 0]

}while{

/* syntactically,

* scenarios can

* be specified here.

*/

}

}

/* end of caste Worker*/

import java.lang.*;

caste Worker{

state int flag(){

int v = 0;

get { return v; }

set { v = value; }

}

action sleep(){

do{

System.out.println(getAgentName()

+ " : I'm so tired, ~zZ");

/* sleep 10 seconds. */

Thread.sleep(10*1000);

}

}

action work(){

do{

System.out.println(getAgentName()

+ " : I'm full of energy! #####");

/* do the real work staff here. */

}

}

Figure 2. Caste Worker in SLABSp.

Agent ::=
(Java-Import)*
‘agent’ name [‘extends’ Caste-Id (‘,’ Caste-Id)*] ‘{’

(Element | Java-Definition)*
‘}’

Caste ::=
(Java-Import)*
‘caste’ name [‘extends’ Caste-Id (‘,’ Caste-Id)*] ‘{’

(Element | Java-Definition)*
‘}’

Element ::=
State-Element

| Action-Element
| Behavior-Element

(b) State-Element, which can be ‘internal’ to the agent or
be observable for other agents. A State-Element must have
‘Getf’ and ‘Setf’ clauses for read and write operations, so
it can represent some complex, multi-dimensional values or
objects.

The state flag of caste Worker in Figure 2 is not internal,
so it is observable for others.

State-Element ::=
[‘internal’] ‘state’ Type id ‘(’ Parameter-List ‘)’ ‘{’

(Java-Definition | Getf | Setf)*
‘}’

Getf ::= ‘get’ ‘{’ Java-Code ‘}’

Setf ::= ‘set’ ‘{’ Java-Code ‘}’

(c) Action-Element, which can be ‘internal’ to the agent
or be observable for other agents. The ‘do’ clause will be
executed when the action is invoked.

In Figure 2, action sleep prints some words and sleeps for
10 seconds, while action work prints some other words.

Action-Element ::=
[‘internal’] ‘action’ id ‘(’ Parameter-List ‘)’ ‘{’

‘do’ ‘{’ Java-Code ‘}’
(Java-Definition)*

‘}’

(d) Behavior-Element. The ‘when’ clause contains pat-
terns of the agent itself, and the ‘while’ clause contains the
scenario of the environment of the agent. When they are
both satisfied, the ‘do’ clause will be executed.

In the caste Worker described above, the ‘while’ clause
is empty, which means always being satisfied. The ‘when’
clause is satisfied when state flag becomes 0.

Behavior-Element ::=
‘behavior’ id ‘{’

‘do’ ‘{’ Java-Code ‘}’
(Java-Definition)*

‘}’ ‘when’ ‘{’
[Pattern]

‘}’ ‘while’ ‘{’
[Scenario]

‘}’

(e) Scenario, which can observe a single agent, a num-
ber of agents of a caste, all agents of a caste, or any re-
lation expression. Scenario can be logical compound of
scenarios. Pattern is used to specify the sequence of ob-
servable state changes and observable action invokings, de-
fined as Sequence-Unit. A Sequence-Unit is either a State-
Assertion, or an Action-Pattern. Once the target agent’s
states are changed or actions are invoked, the pattern se-
quence will be processed by an automaton, the Pattern Pro-
cess Machine.

The atomic action ‘any’ can be matched by any actions,
and the ‘id’ can be matched by action whose name is the
same with ‘id’.

Scenario ::=
Agent-Id ‘:’ Pattern

| Relation-Expression
| ‘for’ (number | ‘all’) Caste-Id ‘:’ Pattern
| Scenario ‘and’ Scenario
| Scenario ‘or’ Scenario
| ‘not’ Scenario
| ‘(’ Scenario ‘)’

Pattern ::= ‘[’ Sequence-Unit (‘,’ Sequence-Unit)* ‘]’

Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC’04)
1530-1362/04 $ 20.00 IEEE

Sequence-Unit ::=
Action-Pattern

| ‘!’ State-Assertion

Action-Pattern ::= Atomic-Action [‘ˆ’ number]

Atomic-Action ::=
‘any’ | id

| id ‘(’ Parameter-Value-List ‘)’

Note that ‘Java-Import’ is the same as Java’s import dec-
laration, and ‘Java-Definition’ can be any declaration clause
of Java, such as class declaration and method declaration.
‘Java-Code’ is the sequence of Java statements, with some
special token referencing state and action elements of the
agent, as used in the ‘do’ clause in Figure 2.

4. Implementation

4.1. The underlying object model

The underlying object models are defined to serve as the
semantics of SLABSp. Programs in SLABSp are compiled
to Java source codes, then to Java class files with our li-
braries for the underlying object model.

When compiling SLABSp programs to Java, a set of
underlying objects are needed to implement the Agents,
Castes, and etc. The relationship between syntax elements
and underlying object classes is given in Table 1. A syntax
element in SLABSp programs will be compiled to a sub-
class of the corresponding underlying object class. These
classes, together with their relationships, form the final Java
package of classes representing the SLABSp program.

Table 1. Relationship between syntax element
and underlying elements

Syntax Element Underlying Object Class
Caste JacCaste

Agent JacAgent

State-Element JacState

Action-Element JacAction

Behavior-Element JacBehavior

Scenario JacScenario

Pattern JacPatternProcessMachine

State-Assertion StateAssertion

Action-Pattern ActionPattern

Figure 3 is the UML class diagram of the underlying ob-
jects. All agents in SLABSp program will be compiled to a
Java class inheriting JacAgent, and all castes inheriting Jac-

Caste. They both extend JacUnit, which is an aggregation of

JacState, JacActoin and JacBehavior. JacState is super class of
all state elements, the same happens to JacAction and JacBe-

havior.

JacUnit

JacAgent JacCaste

JacState

JacBehavior

JacAction

JacStructureElement

JacElement

Figure 3. Class diagram of agent and caste.

In this model, an agent’s structure can be changed at run-
time, which makes dynamic evolving possible. An agent
can add new states, actions, or even behavior rules on the
fly. The membership can also be changed at runtime: agent
can determine the caste to join at appropriate time.

preChange()

postChange()

addStateChangeListener()

removeStateChangeListener()

JacState

preInvoke()

postInvoke()

addActionInvokeListener()

removeActionInvokeListener()

JacAction

Figure 4. Key methods in JacState and JacAc-
tion.

As shown in Figure 4, JacState has preChange and
postChange methods, which will be invoked before and after
the state changing method respectively. JacAction’s preInvoke

and postInvoke methods will be respectively invoked before
and after the action invoking method. These methods will
trigger their listeners, the JacPatternProcessMachine, to pro-
cess scenarios.

Figure 5 shows that a JacBehavior object has relationship
with JacScenario object. The JacScenario is the super class of
other concrete scenario classes. AgentScenario cares for

Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC’04)
1530-1362/04 $ 20.00 IEEE

Scenario ::= Agent-Id ‘:’ Pattern

in the syntax definition of scenario. CasteScenario cares for
the quantified scenarios:

Scenario ::= ‘for’ (number | ‘all’) Caste-Id: Pattern.

Other classes represent compound scenarios. AndSce-

nario reaches the satisfied state if its two sub scenarios are
both satisfied. OrScenario reaches the satisfied state if either
of its two sub scenarios is satisfied. NotScenario is satisfied
when its sub scenario is not satisfied, and it is rejected when
its sub scenario is satisfied.

JacScenarioJacBehavior

OrScenario

AndScenario

NotScenario

AgentScenario

CasteScenario

Figure 5. Class diagram of scenarios.

AgentScenario and CasteScenario use an automaton called
Pattern Process Machine to process the state transition de-
fined by the pattern. JacPatternProcessMachine has imple-
mented two interfaces, JacStateChangeListener and JacAction-

InvokeListener. When a state is changed, all registered Jac-

StateChangeListener will be notified, and when an action is
invoked, all registered JacActionInvokeListener will be noti-
fied. So JacPatternProcessMachine can track the environ-
ment’s change via the listener interfaces. The Pattern Pro-
cess Machine only need register to the states and actions it
cares, so that it will not be bothered by irrelevant events.

JacPatternProcessMachine has a sequence of unit defined
by the pattern in the behavior rule, as shown in Figure 6.

Each sequence unit is either a state assertion or an ac-
tion pattern, which is represented by subclass of StateAsser-

tion and ActionPattern. They have a match method to de-
termine whether the changing event matches the sequence
unit. Each sequence unit has an ‘active’ flag to sign whether
it is the one to be matched next. The sequence is an array of
sequence units. When the Pattern Process Machine goes to
the end of the sequence, the EndState, it reaches the satisfied
state, as shown in Figure 7.

Once a related state is changed or an action is invoked,
the Pattern Process Machine will be notified and do the pro-

ActionPattern

StateAssertion

SeqUnit

JacPatternProcessMachine

<<interface>>

JacStateChangeListener

<<interface>>

JacActionChangeListener

EndState

Figure 6. Class diagram of Pattern Process
Machine and related classes.

<<Thread>>

Agent

Pattern

Process

Machine

(PPM)

Scenario

…
…

State changed or

action invoked.

Scenario will check

the PPM’s state.

SeqUnit is either a state

assertion, or an action

pattern, or the EndState.

The EndState will trigger

the PPM to an accept state.

SeqUnit

SeqUnit

SeqUnit

EndState

Figure 7. Processing the Pattern Process Ma-
chine.

cess. If it is an action invoking, all the active ActionPatterns
are checked and deactivated, the successor sequence units
of the matched ActionPatterns are activated. Then all the ac-
tive StateAssertions are evaluated. The satisfied StateAsser-

tions are deactivated, and their successor sequence units are
activated. At the end of the processing, the first sequence
unit is always activated. Whenever the EndState sequence
unit is activated, the Pattern Process Machine will enter its
satisfied state.

4.2. Scenario processing

With the syntax definition of scenario, there are 4 types
of scenarios in SLABSp: scenario about one agent, quan-
tified scenario about one caste, arithmetic relation expres-

Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC’04)
1530-1362/04 $ 20.00 IEEE

sion, and logical compound scenarios. The former two are
key scenarios, which are handled respectively by AgentSce-

nario and CasteScenario. Arithmetic relation expression is
just a conditional expression, which may use CasteScenario

to count the number of specific agent in one caste. Com-
pound scenarios simply connect scenarios with logical con-
junctions, and they eventually use scenarios of the former
three types.

Scenario
Scenario
Scenario

<<Thread>>

Agent

Environment

Pattern

Process

Machines.

Periodically checks

its behavior rules’ state

Actions will be taken if some

behavior rule is satisfied.

Behavior rule’s

state depends on

all its scenarios.

Environment can affect

the scenarios caring for it.

PPM
PPM
PPM

Action
Action
Action

<<Thread>>

Agent
<<Thread>>

Agent
<<Thread>>

AgentPPM
PPM
PPM

Caste
Caste
Caste

Behavior Rule
Behavior Rule
Behavior Rule

Figure 8. How scenarios are checked.

As shown by Figure 8, the agent periodically checks its
behavior rules’ states, for each satisfied behavior rule, the
corresponding ‘do’ clause will be executed. A behavior
rule’s state depends on all its scenarios, and the environ-
ment can affect the scenarios caring for it — via the regis-
tered Pattern Process Machines.

(a) AgentScenario. Scenario about one agent is handled
by AgentScenario, and has the form

Scenario ::= Agent-Id ‘:’ Pattern.

When compiled, a subclass of AgentScenario is generated
with the Agent-Id as the parameter, and the pattern is repre-
sented by a subclass of JacPatternProcessMachine.

When running, an instance of this subclass of AgentSce-

nario will find the agent with name Agent-Id, and register its
JacPatternProcessMachine object to the JacAgent object. The
JacPatternProcessMachine object will find the states and ac-
tions it cares, and register itself as listeners to them, then
wait for notifications. When the caring states are changed or
actions are invoked, the JacPatternProcessMachine will pro-
cess as described above. Once the JacPatternProcessMachine

object’s state changes, AgentScenario knows about it, and its
state will be checked by the owner JacAgent object of the
AgentScenario object.

(b) CasteScenario. Quantified scenario about one caste is
handled by CasteScenario, and has the form

Scenario ::= ‘for’ (number | ‘all’) Caste-Id: Pattern.

When compiled, a subclass of CasteScenario is generated
with the Caste-Id and the number as the parameters, and the
pattern is represented by a subclass of JacPatternProcessMa-

chine.
When running, an instance of this subclass of CasteSce-

nario will find the caste with name Caste-Id, and register
itself to the JacCaste object. The JacCaste object records all
the agents who join it, and will instantiate the JacPatternPro-

cessMachine object for every agent it records, and then reg-
ister the JacPatternProcessMachine object to the correspond-
ing JacAgent object. Every JacPatternProcessMachine object
tracks one agent’s states and actions. The CasteScenario will
be notified when any JacPatternProcessMachine object’s state
is changed, so it can know the number of the satisfied agents
in the caste. Comparing the parameter number with current
number of the satisfied agents, the CasteScenario object can
represent the quantity of the scenario, and the result will be
checked by the owner JacAgent object of the CasteScenario

object.

4.3. The runtime environment

We have constructed a basic runtime environment for ex-
ecuting SLABSp programs. It works on a single JVM now,
and it can be extended to a distributed platform.

The class diagram of the runtime environment is shown
in Figure 9. Platform has two containers, one for agents,
and the other for castes. Each JacAgent implements the Java
Runnable interface, and has its own thread, as a support to
the autonomy characteristic of agent.

Platform

AgentContainer

CasteContainer

JacAgent

JacCaste

<<interface>>

Runnable

Figure 9. Runtime platform.

The platform loads the specific agent or caste class, does

Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC’04)
1530-1362/04 $ 20.00 IEEE

the initiation, then spawns and starts a new thread for each
agent.

The agent periodically checks all its behavior rules to
see which behavior rule is satisfied and then executes it.
AgentContainer manages agents’ lifecycle, such as loading
an agent from the compiled Java classes, start and stop the
agent, and finally, remove the agent from Platform.

CasteContainer is used to load Java classes of castes, or
remove castes from Platform.

JacPlatform also provides the naming service to find an
agent or castes by its qualified name.

4.4. The example

With the caste Worker defined in Figure 2, agents named
Tom and Jack are defined in Figure 10.

Tom and Jack both are Workers, thus they both have a copy
of action work and sleep from caste Worker. Tom has two
additional behavior rules (wokeup and gotobed). When Tom

has taken action sleep, and he sees Jack has taken action
sleep, Tom will take action work; when Tom has taken action
work, and he sees Jack has taken action work, Tom will take
action sleep.

agent Tom extends Worker{

behavior wokeup(){

do{

action work();

}

}when{

[sleep()]

}while{

Jack: [sleep()]

}

behavior gotobed(){

do{

action sleep();

}

}when{

[work()]

}while{

Jack: [work()]

}

}

agent Jack extends Worker{

behavior wokeup(){

do{

action work();

}

}when{

[sleep()]

}while{

Tom: [work()]

}

behavior gotobed(){

do{

action sleep();

}

}when{

[work()]

}while{

Tom: [sleep()]

}

}

Figure 10. SLABSp source code of agents
Tom (left) and Jack (right).

In Figure 10, Jack also has two additional behavior rules
(wokeup and gotobed). When Jack has taken action sleep, and
he sees Tom has taken action work, Jack will take action work;
when Jack has taken action work, and he sees Tom has taken
action sleep, Jack will take action sleep.

As Workers, Tom and Jack both start with action sleep. So
at beginning, Tom’s behavior rule wokeup will be taken, and

Jack’s behavior rule wokeup will be taken next, then Tom’s
behavior rule gotobed, and so does Jack. And this will loop
‘forever’. Figure 11 is a screen shot of the example.

Figure 11. Screen shot of the example.

5. Related work

There are many research works reported in the litera-
ture related to the realization of agent-oriented program-
ming and hundreds of agent construction tools have been
realized. Many of them are based on Java, such as Agent-
Builder [5], JACK [2], JADE [1], ZEUS [4] and etc.

AgentBuilder [5] provides tools for building Java agent
systems based on a toolkit and a runtime system. The toolkit
includes tools for managing the agent software development
process, analyzing the domain of agent operations, defin-
ing, implementing and testing agent software. The runtime
system provides an agent engine, used as execution envi-
ronment of agent software. Agents in AgentBuilder are
based on a model derived by the AGENT0 [6] agent model.
Agents usually communicate through KQML messages and
it’s possible to define new communication commands to
cope with developer’s particular needs.

JACK [2] Intelligent Agents is an environment for build-
ing, running and integrating commercial Java-based multi-
agent software using a component-based approach. JACK
incorporates the significant advances in agent research and
software engineering. It provides the core architecture and
infrastructure for developing and running software agents
in distributed applications. The JACK Agent Language ex-
tends Java with agent-oriented concepts, such as Agents,

Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC’04)
1530-1362/04 $ 20.00 IEEE

Capabilities, Events, Plans, Agent Knowledge Bases, Re-
source and Concurrency Management.

JADE [1] is a software framework to help the develop-
ment of agent applications in compliance with the FIPA
specifications for interoperable intelligent multi-agent sys-
tems. JADE uses an agent model and a Java implementa-
tion that offer a good runtime efficiency and software reuse.
JADE agent platform tries to optimize the performance of
a distributed agent system implemented with the Java lan-
guage. In particular, its communication architecture tries to
offer flexible and efficient messaging, transparently choos-
ing the best transport available and leveraging state of the
art distributed object technology embedded within Java run-
time environment.

ZEUS [4] provides a library of agent components for the
rapid development of Java agent systems, supporting a vi-
sual environment for capturing user specifications, an agent
building environment that includes an automatic agent code
generator and a collection of classes that form the building
blocks of individual agents. Agents are composed of five
layers: API layer, definition layer, organizational layer, co-
ordination layer and communication layer. The API layer
allows the interaction with non-agentized world. The defi-
nition layer manages the task the agent must perform. The
organizational layer manages the knowledge about the other
agents. The coordination layer manages coordination and
negotiation with other agents. Finally, the communication
layer allows the communication with the other agents.

The scenario mechanism in SLABSp has not supported
by these works. When their agents want to know the be-
havior and state of other agents, they have to communicate
with each other directly. However, in SLABSp, with sce-
nario mechanism, an agent can perceive other agents in its
environment, rather than communicate directly. Scenario
mechanism makes it possible for an agent to perceive other
agents’ behaviors, which makes agent-oriented program-
ming more flexible.

6. Conclusions and future work

Scenario has been used to describe agent behaviors in
the context of environment situations in SLABS. As demon-
strated in SLABS, the scenario mechanism provides a lan-
guage facility for defining agent’s behavior under spe-
cific environment. This paper presents an approach to
the support of scenario mechanism in agent-oriented pro-
gramming. As an experimental programming language,
SLABSp is designed and implemented, where the scenario
mechanism is explicitly supported as the distinguished fea-
ture.

It is noticed that the scenario mechanism in this paper
can be used in many existing agent programming tools. For
example, scenario mechanism can be used for an agent to

perceive the environment. It can reduce many unnecessary
direct communications among agents, so it can ease the de-
velopment process and improve the runtime performance.
So, an agent can sense its environment with the help of sce-
nario mechanism.

At this moment, the pattern used in the scenario is de-
scribed by the sequence of state assertions and action pat-
terns. We are defining more expressive pattern syntax for
more complex environment, such as patterns in regular ex-
pressions of state assertions and action patterns.

The other further work includes the support of the dy-
namic features of agent/caste presented in SLABS, and the
implementation of SLABSp over a distributed computing
environment, by using Java RMI or CORBA.

References

[1] F. Bellifemmine, A. Poggi, G. Rimassa, and P. Turci. An
object-oriented framework to realize agent systems. In Pro-
ceedings of WOA 2000 Workshop, volume 1195, pages 52–
57, 29–30 May 2000.

[2] M. Coburn. JACK Intelligent Agents: User Guide, version
2.0. http://www.agent-software.com, 2001.

[3] B. Moulin and M. Brassard. A scenario-based design
method and environment for developing multi-agent sys-
tems. In Proceeding of First Australian Workshop on DAI,
volume 1087 of LNAI, pages 216–232, 1996.

[4] H. S. Nwana, D. T. Ndumu, and L. C. Lee. ZEUS: An ad-
vanced tool-kit for engineering distributed multi-agent sys-
tems. In Proceedings of PAAM98, pages 377–391, 1998.

[5] Reticular Systems, http://www.agentbuilder.com. Agent-
Builder, An integrated Toolkit for Constructing Intelligence
Software Agents, 1999.

[6] Y. Shoham. Agent-oriented programming. Artificial Intelli-
gence, 60(1):51–92, 1993.

[7] G. Weiss, editor. Multiagent Systems: A Modern Approach
to Distributed Artificial Intelligence. MIT Press, 1999.

[8] M. Wooldridge and N. Jennings. Intelligent agents: The-
ory and practice. The Knowledge Engineering Review,
10(2):115–152, 1995.

[9] H. Zhu. Formal specification of agent behaviour through en-
vironment scenarios. In Proceeding of NASA First Workshop
on FAABS, volume 1871 of LNCS, pages 263–277, 2000.

[10] H. Zhu. Scenario analysis in an automated requirements
analysis tool. Journal of Requirements Engineering, 5(1):2–
22, 2000.

[11] H. Zhu. The role of caste in formal specification of MAS. In
Proceeding of PRIMA’2001, volume 2132 of LNCS, pages
1–15, 2001.

[12] H. Zhu. SLABS: A formal specification language for agent-
based systems. International Journal of SEKE, 11(5):529–
558, 2001.

[13] H. Zhu and D. Lightfoot. Caste: A step beyond object orien-
tation, in modular programming languages. In Proceeding
of JMLC’2003, volume 2789 of LNCS, pages 59–62, 2003.

Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC’04)
1530-1362/04 $ 20.00 IEEE

