
 1

��������	
�

������������� �����������
����������������

�������������������

Lijun Shan
National University of Defense Technology, China

Rui Shen
National Laboratory for Parallel and Distributed Processing, China

Ji Wang
National Laboratory for Parallel and Distributed Processing, China

Hong Zhu
Oxford Brookes University, UK

Copyright © 2007, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

ABSTRACT

Based on the meta-model of information systems presented in Zhu (2006), this chapter presents
a caste-centric agent-oriented methodology for evolutionary and collaborative development
of information systems. It consists of a process model called growth model, and a set of agent-
oriented languages and software tools that support various development activities in the
process. At the requirements analysis phase, a modelling language and environment called
CAMLE supports the analysis and design of information systems. The semi-formal models in
CAMLE can be automatically transformed into formal specifications in SLABS, which is a
formal specification language designed for formal engineering of multi-agent systems. At
implementation, agent-oriented information systems are implemented directly in an agent-
oriented programming language called SLABSp. The features of agent-oriented information
systems in general and our methodology in particular are illustrated by an example throughout
the chapter.

2

Caste-Centric Development of Agent-Oriented Information Systems

INTRODUCTION

In Zhu (2006), we presented a vision of future
information systems through an agent-oriented
meta-model. The promising features of the
meta-model were illustrated in the context of
software development on the Internet/Web plat-
forms and the utilisation of mobile computing
devices. In this chapter, we address the prob-
lem of how to develop such agent-oriented
information systems (AOISs). Based on the
meta-model introduced in Zhu (2006), we pro-
pose a methodology for developing an AOIS
which consists of a process model that guides
the development activities, along with a set of
languages and software tools that support vari-
ous development activities in the process.

The chapter is organised as follows. We
begin by describing an information system used
as the running example in the chapter. We then
propose an evolutionary development process
model for AOIS and outline the caste-centric
agent-oriented modelling language and envi-
ronment, CAMLE. The next section reviews
the formal specification language SLABS, which
stands for a Specification Language for agent-
based systems. The focus then turns to imple-
mentation issues, and the SLABSp experimen-
tal programming language is briefly described.
We conclude the chapter with a discussion of
related work and further work.

DESCRIPTION OF THE
RUNNING EXAMPLE

We will use a simple, but non-trivial, informa-
tion system to illustrate our methodology as a
running example throughout the chapter. The
example was proposed and used as a case
study by FIPA’s AUML Technique Committee
(2004) to study agent-oriented modelling meth-
ods and notations. It was inspired by the proce-
dure of the United Nations Security Council to

pass a resolution. The description of the system
follows.

The United Nation Security Council (UNSC)
consists of a number of members, some perma-
nent and others elected from UN members.
Members become the chair of the Security
Council in turn monthly. To pass a UNSC
resolution, the following procedure is followed:

1. At least one member of UNSC submits a
proposal to the current chair.

2. The chair distributes the proposal to all
members of UNSC and sets a date for a
vote on the proposal.

3. At a given date that the chair sets, a vote
from the members is made.

4. Each member of the Security Council can
vote either FOR or AGAINST or SUS-
TAIN.

5. The proposal becomes a UNSC resolu-
tion, if the majority of the members voted
FOR and no permanent member voted
AGAINST.

6. The members vote one at a time.
7. The chair calls members in a given order

to vote, and the chair is always the last one
to vote.

8. The vote is open (in other words, when one
votes, all the other members know the vote).

9. The proposing member(s) can withdraw
the proposal before the vote starts, and in
that case no vote on the proposal will take
place.

10. All members vote on the same day, one
after another, so that the chair does not
change within the vote call; but it is pos-
sible for the chair to change from one
member to another between the time a
proposal is submitted until it goes into
vote. In this case the earlier chair must
forward the proposal to the new one.

11. A vote is always finished in one day and no
chair change happens on that day. The
date of the vote is set by the chair.

 3

Caste-Centric Development of Agent-Oriented Information Systems

In the remainder of the chapter, we will use
the above as the initial requirements specifica-
tion to demonstrate how agent-oriented infor-
mation systems are analysed, modelled, de-
signed, and implemented in our methodology.

DEVELOPMENT PROCESS

As discussed in Zhu (2006), one of the most
attractive potential features of agent-oriented
information systems is its strong support of the
evolution of information systems and their col-
laborative developments. To realise this, we
proposed a lifecycle model of software sys-
tems as shown in Figure 1 (Zhu, Greenwood,
Huo, & Zhang, 2000; Zhu, 2002, 2004).

The lifecycle model is called growth model
because it views information systems’ lifecycle
as a process of growth. From this point of view,
a software system’s lifecycle can be divided
into three periods: the seed period, the growth
period, and the decline period. When an infor-

mation system is initially constructed and put
into operation, it is relatively weak and small in
terms of the services it provides, the volume of
information it contains, and other non-func-
tional attributes such as performance, security,
and so forth. During the operation, the system
grows in many directions and dimensions. New
components may be integrated into the system
to provide new services, while current compo-
nents may be modified to improve the systems’
functional or non-functional properties as us-
ers’ new requirements are identified and imple-
mented. The system gradually goes to the de-
cline period, and dies when it cannot sustain
more modification to meet new requirements.
It is worth noting that different types of soft-
ware systems may be suitable to different
lifecycle strategies. For example, software sys-
tems of Lenman’s S-type (1990, 2001) are
more suitable to having a strong seed system
and little modifications during the rest of its
lifecycle, because such systems’ requirements
are well understood and well specified. The
modifications are mostly corrections of errors
in the software systems. However, Zhu (2004)
argued that most information systems are
Lenman’s E-type systems whose requirements
are changing, and hence they are evolutionary
by nature. They are best developed following a
growth strategy with the emphasis on the growth
period. In comparison with other strategies that
guide information system development, the
growth strategy has a number of advantages.
The first is the lower risk, because only the best
understood requirements are implemented and
integrated into the system. The investment in
each step of the growth is smaller than imple-
menting a huge system in one big bang. Second,
it is more likely to have a shorter time delay
from the recognition of a well-understood re-
quirement to the delivery of the functionality.
Complicated interactions between requirements
can also be reduced and abated. Third, the
developers can learn from previous develop-

Figure 1. Growth model of software
development

 Inception

Development a seed system

Identify new requirements

Develop new components to
satisfy new requirements

Integrat new components &
remove old components

Operation of system

Yes

Important
but not
feasible

Current system declines /
new system’s concept forms

Suspend
requirements

Not worth
realizing

Seed
period

Growth
period

Decline
period

Are the
requirements
important &

feasible?

4

Caste-Centric Development of Agent-Oriented Information Systems

ment experiences and improve their perfor-
mance in the follow-up development of new
components. They can gain confidence during
the development process and see their results
earlier than other development strategies. Fi-
nally, and most importantly, users’ feedback
can be obtained much earlier than other strat-
egies, as each step of the growth process takes
a much shorter period of time. This enables the
users to clarify their requirements easily and
guide the direction that the system develops. In
fact, this strategy differs from the so-called
staged development process model in its em-
phasis on taking users’ feedback to guide the
direction of software evolution.

To support the growth strategy, we de-
signed and implemented a set of languages and
tools for modelling, specification, and program-
ming agent-oriented information systems. These
languages and tools support various activities in
the development process.

The modelling language and environment
CAMLE supports:

• requirements elicitation and analysis by
representing the current information sys-
tem and the required system in agent-
oriented models; and

• feasibility study of the requirements by
analysing the required modifications to the
existing system.

The formal specification language SLABS
and its formal reasoning logic Scenario Calcu-
lus support:

• formal description of the requirements of
the system under development so that
new functionalities and services can be
implemented as new components in the
form of castes/agents; and

• formal reasoning of the design of the
system/new components to ensure that
the system will meet the requirements and

that the new components can be inte-
grated into the systems as expected.

The agent-oriented programming language
SLABSp and its runtime support environment
are used for:

• the implementation of the system/compo-
nents according to the semi-formal speci-
fication in the CAMLE model and/or the
formal specification in SLABS; and

• the testing of new components and the
integration into the existing system.

In the following sections, we will describe
each of these languages and tools, and illustrate
their uses with the running example described
earlier in the chapter.

MODELLING AND ANALYSIS

Modelling plays a crucial role in the develop-
ment of the seed system and its evolution as the
main tool of requirements analysis and system/
component design. This section presents the
modelling process, and the diagrammatic mod-
elling language and environment of CAMLE
(Shan & Zhu, 2003, 2004a, 2004b, 2005; Zhu &
Shan, 2005).

Process of Modelling

In our methodology, modelling aims at represent-
ing the users’ requirements with a set of agents
at various granularities and organizing the agents
into an information system. The key activities in
the modelling and analysis phase include:

• Identify the agents and castes of agents in
the system as well as the relationships
between them, such as the is-a relation
(inheritance), membership-shift relation
(migration or participation), and whole-

 5

Caste-Centric Development of Agent-Oriented Information Systems

part relation (aggregation, congregation,
or composition). The artefact produced in
this activity is a caste model for the sys-
tem from the perspective of system archi-
tecture.

• Identify the agents’ interaction patterns in
various scenarios, and produce a set of
collaboration models for the system from
the perspective of dynamic behaviour. In
order to specify the system in sufficient
detail, an agent may be decomposed into a
number of components, which are also
agents. Then the interaction modelling
proceeds to capture the interactions be-
tween the components. Eventually, the
collaboration model is refined into a hier-
archy, where collaboration models at vari-
ous granularities specify the interactions
between component agents at various
abstraction levels. Along with agent de-
composition, the caste model is enriched
with further details to present the caste of
agents at various granularities and the
structural dependencies between them.

• For each caste, elaborate and specify how
its agents perform actions and/or change
states in typical scenarios so that a set of
behaviour rules can be assigned to the
caste. The artefact produced in this activ-
ity is a set of behaviour models, each
associated to a caste in the system.

The result of the modelling is a system
model comprising a set of diagrams that repre-

sent the system from various views and at
different levels of abstraction. For example, in
the UNSC system, a caste diagram is con-
structed to capture the organization structure,
which comprises one chair and a number of
UNSC members—either permanent member
or elected member. Collaboration diagrams
describe the typical scenarios of the interaction
between UNSC members and the chair.
Behaviour diagrams respectively for UNSC
member and chair define their specific behaviour
rules. More details are given in the next subsec-
tion.

During the growth phase of an existing
agent-oriented information system, new com-
ponents for providing new functions, services,
and features are developed in the context of the
existing system, which will be the operating
environment of the new components. There-
fore, the model of the existing system is the
basis for the representation of the new require-
ments and the analysis of their feasibility. For
example, if the organization of the United Na-
tions Security Council is to be reformed to add
a new type of member whose power on resolu-
tion is between elected member and permanent
member, the UNSC information system can be
modified accordingly by adding a new caste
representing the new type of members.

The Modelling Language

CAMLE employs the multiple views principle
to model complicated systems. There are three

Figure 2. Caste diagram: Notation and the UNSC example

Inherit

Caste Caste node

Migrate

Participate

Aggregate

Composite

Congregate

6

Caste-Centric Development of Agent-Oriented Information Systems

types of models in CAMLE: caste models,
collaboration models, and behaviour models.
Each model may consist of one or more dia-
grams.

A caste model usually consists of one caste
diagram. Figure 2 shows the notation of caste
diagrams and an example caste diagram of
UNSC system. A caste diagram comprises a
set of caste nodes representing various types of
agents in the system, and a set of links repre-
senting various relationships between agents of
the castes.

In the UNSC caste diagram, caste UNSC
represents the organization, which is composed
of a number of members represented by caste
UNSC-member. The aggregate link between
the UNSC-member and the UNSC denotes the
part-whole relationship between the members

and the organization. The rule that members
take the role of Chair in rota is described by
participate and migrate relation between caste
UNSC-member and caste Chair. Two types of
members are represented by two sub-castes of
UNSC-member, Permanent-member and
Elected-member, respectively.

The collaboration models capture agents’
interaction patterns that represent dynamic
behaviours of the system. The notation of col-
laboration diagrams is shown in Figure 3. A
collaboration model may consist of a set of
scenario-specific collaboration diagrams that
represent the interactions between agents in
specific scenarios, and a general collaboration
diagram that summarises the communications
between agents.

For example, Figure 4 depicts the collabora-
tion model of UNSC. Figures 4a and 4b de-
scribe the interactions between agents in the
scenarios of voting on a proposal and with-
drawal of a proposal, respectively. The general
collaboration diagram, such as Figure 4c, de-
scribes all possible communications between
all agents that may occur during the system’s
execution.

Figure 3. Notation of collaboration diagra

 AgentName:Caste Agent node: CasteName Caste node:

Communication Link:
Actions N1 N2

Figure 4. Collaboration model of UNSC information system

(a)
(b)

(c)

 7

Caste-Centric Development of Agent-Oriented Information Systems

a. Scenario-specific diagram: Voting
b. Scenario-specific diagram: Withdraw
c. General collaboration diagram

Note that when an agent is decomposed into
components, the interactions between the com-
ponent agents also need to be specified. This
results in a hierarchy of collaboration models
defining the dynamic behaviours of agents at
various granularities. Readers are referred to
Shan and Zhu (2004b) for details about the
process of collaboration modelling, the hierar-
chical structure of collaboration models, as well
as examples.

While caste and collaboration models de-
scribe multi-agent systems at the macro-level
from the perspective of an external observer,
behaviour modelling adopts the internal or first-
person view of each agent. It describes an
agent’s behaviour in terms of how it acts in
certain scenarios of the environment at the
micro-level. The notation of behaviour dia-
grams is shown in Figure 5. Readers are re-
ferred to Shan and Zhu (2003) for detailed
explanation of the notation.

Each caste is associated with a behaviour
diagram that describes the behaviour rules of
its agents. In the UNSC example, there are two
behaviour diagrams: one for caste Chair and
the other for caste UNSC-member. Figure 6
depicts the behaviour diagram for caste Chair.

The behaviour of a Chair agent is defined by
four behaviour rules describing its actions un-
der various circumstances, namely to distribute
a proposal when some member submits the
proposal, to withdraw the proposal when re-
quested by the proposing member(s), to call all
the members to vote on a proposal, and to quit
from Chair when its turn finishes.

The castes Permanent-member and Elected-
member inherit the behaviour rules of UNSC-
member. They have no additional behaviour
rules, thus require no different behaviour dia-
gram than that of the UNSC-member.

The Modelling Environment

A software environment to support the process
of analysis and modelling in CAMLE has been
designed and implemented. It integrates the
following set of tools:

• Model Construction and Management
Tools: A set of interactive diagram edi-
tors with graphic user interface are pro-
vided to enable the creation, editing, and
modification of various diagrams in
CAMLE models. These diagrams are or-
ganized and managed into development
projects. Reuse of models from other
projects is enabled. Figure 7 shows a
screen snapshot of the CAMLE
environment’s interface.

Figure 5. Notation of behaviour diagram

T-Exp

A B

t: Predicate
C-Exp

R-Exp

Act(p1,…pn) t: Action node

State assertion node

Temporal order Link

Logic link & or

Scenario

Precondition

Scenario node

Precondition node

Transition bar

Resulting arrow

Logic connective nodes

8

Caste-Centric Development of Agent-Oriented Information Systems

• Consistency Checkers: A set of con-
sistency constraints is defined on the
CAMLE language to ensure that a set of
diagrams form a meaningful model of an
information system. The consistency of a
model is checked by a set of tools to
identify any violence of the constraints.
Details of the consistency constraints and
the implementation of the checkers can be
found in Shan and Zhu (2004a).

• Specification Generator: It transforms
a well-defined model into a formal speci-
fication in SLABS. Details of the trans-
formation algorithms can be found in Zhu
and Shan (2005).

Figure 8 shows the architecture of the mod-
elling environment. Readers are referred to
Zhu and Shan (2005) for detailed description of
the architecture and functionality of the CAMLE
environment.

SPECIFICATION

One of the most appealing features of agent
technology is its natural way to modularise
complex systems in terms of multiple interact-
ing autonomous components. This feature is
supported by the language facility caste in
SLABS for modular and composable specifica-
tion of multi-agent systems. It bridges the gap
between graphic modelling and implementation
in the AOIS development process. The output
of the modelling phase—a system model in
CAMLE—is further analysed at the specifica-

Figure 7. CAMLE’s graphical user interface
for model construction

Figure 6. Behaviour diagram of the chair in UNSC information system

 9

Caste-Centric Development of Agent-Oriented Information Systems

tion phase, which involves the following two
main activities:

• Generation of Formal Specifications:
As for all software developments, it is
necessary to analyse the design of an
agent-based system before the develop-
ers are committed to costly implementa-
tion. It is particularly true during the evo-
lution of a system when new components
are to be integrated into the existing sys-
tem. Formal analysis of the new compo-
nents in the context of the system is there-
fore highly desirable. However, the manual
production of formal specifications of multi-
agent systems is labour intensive, costly,
time consuming, and error prone. With the
help of the CAMLE modelling environ-
ment, formal specifications in SLABS can
be automatically generated from graphic
models in CAMLE.

• Formal Analysis of the System: Formal
analysis can be applied on formal specifi-
cations in SLABS to prove the properties

of the specified system. We have been
devising a formal system Scenario Calcu-
lus to reason about the behaviours of
multi-agent systems, especially their most
complicated behaviours such as emergent
behaviours (Zhu, 2005). If the formal rea-
soning about the system/new components
based on the formal specification reveals
that the system model is unsatisfactory on
certain properties, the flow of the process
goes back to the modelling phase to rectify
the design. Thus, the process iterates the
modelling and specification stages until a
satisfactory model/specification is
achieved.

The formal definition of the SLABS lan-
guage and its meta-model can be found in Zhu
(2001, 2003). A formal logic for reasoning
about MASs’ behaviours based on SLABS can
be found in Zhu (2005).

Figure 9 shows an example of caste speci-
fication. It is the UNSC-member caste gener-
ated by the CAMLE environment’s specifica-

Figure 8. The architecture of CAMLE environment

 Users’
Requirements

Formal
Specifications

Diagram
Editor

Partial
Diagram

Generator

Well-
formedness

Checker

Graphic
Models

Graphic User
Interface

Model
Manager

Specification
Generator

Consistency
Check Report

Consistency
Checker

Controller

Collaboration
Model Checker

Caste/
Collaboration

Checker

Behaviour/
Collaboration

Checker

Caste/
Behaviour
Checker

Behaviour
Model

Checker

General/
Specific
Checker

Cross level
Checker

10

Caste-Centric Development of Agent-Oriented Information Systems

tion generator from the CAMLE model of the
UNSC system.

IMPLEMENTATION

A distinctive feature of our agent-oriented de-
velopment methodology of information systems
is that we aim at the direct implementation of
information systems with a novel agent-ori-
ented programming language that is based on
the meta-model of the agent-oriented informa-
tion system described in Zhu (2006). Such a
programming language can significantly nar-
row the gap between specification and imple-
mentation. This section presents our research
on the design and implementation of the agent-
oriented programming language SLABSp and
illustrates the style of programming through the
running example.

SLABSp is designed to support the caste-
centric approach to agent-oriented software
development methodology by extending the
object-oriented programming language Java
(Shen, Wang, & Zhu, 2004; Wang, Shen, &
Zhu, 2005a, 2005b, 2005c). As shown in Figure
10, it extends Java with three key concepts and
language facilities: caste, scenario, and envi-
ronment descriptions.

These language facilities become the domi-
nant language facilities in the implementations
of an AOIS and significantly change the styles

of programming. In particular, caste becomes
the basic program unit from which a compli-
cated software system is built. Although class
in object-orientation can still be used in the
programming, it is now mainly used to define
encapsulated data types that agents manipulate
and use to represent agent states. Other Java
constructs, such as Import statements, Expres-
sions, Statements, and so on, are still legal
language facilities, but they are extended to
include identifiers to refer to agent states and
actions, which are represented by preceding
‘#’ and ‘~’, respectively. There are also the
additional join and quit statements to enable
agents to dynamically join into and quit from
castes.

Another significant change of programming
style is the result of the introduction of the
scenario description language facility. The syn-
tax of scenario description is given in Figure 10,
where an expression in the form of (a) de-
scribes the situation that a specific agent be-
haves in a certain pattern, where the agent is
referred to by its name or keyword self. Ex-
pressions in the form of (b) describe the situa-
tion that the number of agents of a caste that
behave in a certain pattern is within a specified
interval, where the interval’s boundaries are
optional. The default value of the left boundary
(i.e., the lower number) is ‘zero’. When the
right boundary is absent, it means ‘all’—that is,
the size of all the caste. The count-condi-

Figure 9. Specification of UNSC-member caste in SLABS

 11

Caste-Centric Development of Agent-Oriented Information Systems

tional-expression in the form of (c) is an
extension of Java conditional-expression with
count-expression. The result of evaluating a

count-expression is the number of agents in a
caste that behave in the pattern. Expressions in
the form of (d), (e), and (f) are the logic ‘and’,
‘or’, and ‘not’ combination of scenarios in the
above forms, respectively. Expressions in the
form of (g) are used to change the preference
of the logic combinations. The uses of scenario
descriptions in conjunction with agents’ visible
actions and environment descriptions enable
communication and collaboration among agents
to be described at a high level of abstraction and
in the same style of conditional expressions in
structured programming.

For example, the UNSC system can be
implemented in SLABSp as shown in Figure 13.
Based on the specification of the UNSC sys-
tem, caste Member has three behaviour rules.
Rule Withdraw will enable the agent to request
the proposal to be withdrawn when the agent
regards the proposal as inappropriate. Rule
Vote will guide the agent to vote on the proposal
with a specific attitude when the chair calls the

Figure 10. Syntax of SLABSp in EBNF

����� �����������	
��� �
���	
�� ��
� ���� ����
� ����� ������

��������
�����
������� �������� ������ �

���
����� �����������	
��� ��

�����
� ��
� ���� ����
� ����� ��������
��������
�����
���
�
������
������������

���
������
��� ������
� ������

����� ��������
������ ������ � �����!� ��
������
���� �"� ���
����������������� �
���
� ��� �����
���
��	�
� ��� �����
��� �

���
������ ��������
������ ���#�����!� ��
������
���� �"� ���

�������
��� �
���

���� ���������� ����!� ��
������
���� �"�
��$%��� �!� ������� �"� �
��$%���� �!� ��� ���������!������� �"� �
���� ��� �������
��� �����

������� ����!���
� ���	��&� "������� "�#
�����'� (�)*������� (�)*�����+� ��
� ������� "$#
������������� ���������!������� "�#
����������� ��� ������� " #
����������� ��� ������� "�#
�����,� ������� "�#
�����!� ������� �"� !�#

������ ����
�-� ��!�������������� ���������������� "������� ���-�

������������� ����
!�#� ���.� ���#�����!� ���
���� �"� "��/� (�)*���

���������������������� ���������!�������

Figure 11. Fragments of UNSC system in SLABSp

������ ����������	��
�
������ �������������
����

��	�
 ���������
��
���
�	��������
��������� ����������	��
����
���������
�

� ������!��������� ������������������
�

��������
��
��
� �
��
������������������������������
�

�"
���������������� ������������������
�

���
 	��������
��������� ���������
�
� ��	
��#�#��$%�%&�
��
�#�'������(���������# �
�� � ��������	
� ������
�������
���

	��
����
)����
����*
�+���,
��
��������
����	-./01/�0234��5��*
�3��
���

�	��������
��������������
��
�

���
 ����6��
��������� ����������	��
����
�
�
� ��	
��#�	��������
�(����������(���
�# �
�
�
 �����
����*
�+���,
���*
�3��
���
7��������
���
�� ������
���
�������������������������
����������������
���������
��

����
,�����
��
���)��
��
�8�*
�����
�
��
����
���
�	
����
�����
��
� �
��
����
��
����

�����6��
��
��
�������������
�����6��
�	
��������������

�

���
 -��
���
9�����
�
� ��	
��#�# �
�
�
 ���������
����
����
������

���
����*
�+���,
���*
�����
����	-./01/�0234��))�
���
����*
�+���,
���*
�-,������:��������
����	-./01/�0234����

�� � ���� ��������

���
 "
���������������� ���������
�
� ���$�&�
��
�#�6��
�(����������;�#�����
������������
�������

;�
��
�#�6��
�����������10"�# &��
��
�8������������<�=�
>$%�&�
��
���
��
�#�6��
�����������-?-+2'3�# �

�� � �"
��������������������
�

������ �������������
����

��	�
 �
��
���

�'�������������� ����������
������

�

�"
7 ������!��������� ����������
������

�

�6��
��������� ����������-������
��������
��
������

�

���
 ������!��������� ���������
�
� ��	
��#�'������(���������# �
�
�
 �������������+����������
����
�� �

�"
7 ������!�����������
�

���
 6��
��������� ���������
�
� �������#�����6��
�	
����(���������# �
�� �

���������
�	����������
��
-������
��������
)�-������
�10" �������� �!"#$�����%#$�!"
�6��
������������������
��

�

���
 -��
���
@����
�
� ��	
��#�# �
�
�
 ���������������
����
�����

�����0A�����	
�������
����*
�+���,
���*
�����
�����0234��
BB�����
����*
�+���,
���*
�����
����	-./01/�0234��))
���
����*
�+���,
���*
�-,��������������
����	-./01/�0234�����

�� �
���� ������

�
�

��������
�����������
�������������
��	�
 �
���
��
��
� ���
��
���

���&
�

12

Caste-Centric Development of Agent-Oriented Information Systems

agent to vote. Rule AlternateJoin will trigger
the agent to join caste Chair when it is its turn.
Caste Chair extends caste Member with four
additional rules. Rule Distribute will guide the
Chair agent to distribute the proposal and sched-
ule a voting date for each submitted proposal.
Rule CallVote will direct the Chair agent to call
the members to vote on the proposal on the
voting date. Rule AlternateQuit will ask the
current chair to quit from caste Chair when its
turn finishes. Rule Resolution will define how a
decision should be made based on the mem-
bers’ votes.

A runtime environment for the execution of
multi-agent systems has been implemented as
an extension of Java runtime environment. In
particular, an automaton called the pattern pro-
cess machine is designed and implemented to
process patterns and scenarios. A compiler has
been developed to translate SLABSp programs
into Java and to execute in the runtime environ-
ment. More details can be found Shen et al.
(2004) and Wang et al. (2005a, 2005b, 2005c).

The design and implementation of SLABSp
demonstrate that caste and scenario are fea-
sible as programming language facilities. Our
experiences and experiments with the language
clearly show that they provide power abstrac-
tions for AO programming. In particular, the
caste facility enables the modularity in the
concept of agents to be realized directly and in
full strength. An obvious advantage of using
scenarios to define agents’ behaviours is that it
can significantly reduce the unnecessary, ex-
plicit, message-based communications among
agents. This also enables AO programming at a
very high level of abstraction.

CONCLUSION

We now conclude the chapter with a summary
of our main ideas and research results, and a
comparison of our work with related works.

Summary

Our caste-centric methodology of agent-ori-
ented information systems is based on a well-
defined meta-model presented in Zhu (2006). It
consists of a process model called the growth
model, a set of languages including a model-
ling language CAMLE for the requirements
analysis and design, a formal specification
language SLABS and a programming lan-
guage SLABSp, and a set of support tools
including CAMLE’s modelling environment, a
formal reasoning system Scenario Calculus,
and a runtime support environment of agent-
oriented programs. A number of case studies
on modelling, formal specification and verifica-
tion, and programming have been conducted to
develop the heuristics of using the languages
and tools. Our methodology has the following
features.

The methodology aims at modern informa-
tion systems, especially those running on the
Internet and the Web platforms. As argued in
Zhu (2004), such systems belong to Lenman’s
E-type and are by nature evolutionary. The
agent-oriented approach is very suitable for the
development of such systems as we have shown
in Zhu (2006). Moreover, the growth process
model explicitly reflects the evolutionary char-
acteristics of such systems and encourages the
growth strategy, that is, the sustainable long-
term evolution strategy of their lifecycle. This
strategy is also strongly supported by the lan-
guages and tools.

The set of languages designed for use at
different phases in the development and evolu-
tion of AOISs are based on a well-defined
meta-model. The gaps between requirements
specification, system and component design,
and implementation are much smaller than their
counterparts in other existing paradigms and
approaches. In particular, the key concepts of
agents and castes can be directly implemented
in the agent-oriented programming language.

 13

Caste-Centric Development of Agent-Oriented Information Systems

Our methodology is an extension of the
current mainstream paradigm (the object-ori-
entation) of information system development.
In our model, object is a special degenerate
form of agent. Agent-orientation provides a
better metaphor for modelling the information
systems in the real world than object-orienta-
tion. It can directly represent active and au-
tonomous elements in information systems such
as humans, independent information processing
components such as Web services, and so on.
It enables the design and implementation of
computerised information systems in a struc-
ture that is closer to the structure of the system
in the real world than object-orientation.

Finally, our approach to agent-orientation is
caste-centric. In other words, caste plays the
central role in our methodology. It is not just an
abstract concept, but also a language facility that
can be directly implemented in a programming
language. It is the basic form of program unit
from which complicated systems are constructed.
It realises the kind of modularity inherent in the
concept of agents. Our case studies show that
caste can be used in a nice and straightforward
way to model and implement various useful
notions developed in agent technology, such as
roles, agent society, collaboration protocols, nor-
mative behaviours, and so forth.

Related Work

Since Jennings (1999) advocated the notion of
agent-oriented software engineering as a para-
digm for building complex systems, a number of
methodologies for agent-oriented software de-
velopment have been proposed, such as MaSE
(Wood & DeLoach, 2000), Gaia (Wooldridge,
Jennings, & Kinny, 2000; Zambonelli, Jennings,
& Wooldridge, 2003), Tropos (Bresciani, Perini,
Giorgini, Giunchiglia, & Mylopoulos, 2004), and
PASSI (Burrafato & Cossentino, 2002). A
survey and analysis of the current state of the
art in the research on agent-oriented software

engineering can be found in Zambonilli and
Omicini (2004).

As in early work on MAS engineering meth-
odology, MaSE provides a development pro-
cess covering the phases from capturing goals
down to assembling agent classes and system
design. Notations for representing system speci-
fications in various stages and an environment
supporting MAS development are developed
(Wood & DeLoach, 2000). Gaia provides guides
for analysis and design of agent-based systems
with the view that a multi-agent system is a
computational organization consisting of vari-
ous interacting roles (Wooldridge et al., 2000).
Role is adopted as the key concept, which is
associated with responsibilities, permissions,
activities, and protocols. The new version Gaia
methodology advocates computational organi-
zation abstractions as the key abstraction of
agent-based computing (Zambonelli et al., 2003).
Tropos methodology emphasizes the use of the
notion of agent and all the related mentalistic
notions in all phases of software development,
and purports to cover the very early phases of
requirements analysis (Bresciani et al., 2004).

Despite the subtle differences in the re-
search aims and focuses, the above works hold
the same beliefs that the concept of agent is on
a higher level of abstraction than object, thus
agent-orientation will bring more efficiency to
software engineering than object-orientation.
Most of the existing methodologies attempt to
exploit agents’ advantages, such as autonomy
and sociality using the mentalistic notions in-
cluding goal, plan, role, and so on. Our work
distinguishes from them in that the notions of
caste and scenario, instead of the mentalistic
notions, are the basic concepts for embodying
agents’ power.

Further Work

There is still a long way to go before agent-
orientation become a mature development para-

14

Caste-Centric Development of Agent-Oriented Information Systems

digm of information systems. There are many
issues remaining for future work. On the top of
our research agenda is further investigation of
the languages and tools in industrial context.
We will connect the languages and tools with
the ongoing development of Web technologies
such as Web services, grid computing, and
peer-to-peer computing. Another aspect of
development methods that has not been dis-
cussed in depth in this chapter is testing, verifi-
cation, and validation. We will further develop
the formal reasoning system scenario calculus
for analysing SLABS specifications and rea-
soning about the properties of emergent
behaviours. We are also investigating software
tools to support the formal reasoning. Auto-
matic transformation from SLABS specifica-
tions to executable system is also in our agenda.

ACKNOWLEDGMENT

The work reported in this chapter is partly
supported by the National Key Foundation Re-
search and Development Program (973) of
China under Grant No. 2005CB321802, the
National High Technology R&D (863)
Programme of China under grants No.
2002AA116070 and No. 2005AA113130, and
the Program for New Century Excellent Tal-
ents in University.

REFERENCES

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia,
F., & Mylopoulos, J. (2004). Tropos: An agent-
oriented software development methodology.
Autonomous Agents and Multi-Agent Sys-
tems, 8(3), 203-236.

Burrafato, P., & Cossentino, M. (2002). De-
signing a multi-agent solution for a bookstore

with the PASSI methodology. Proceedings of
AOIS’02 at CAiSE’02.

FIPA Agent UML Technique Committee.
(2005). Case studies of agent modelling: The
Security Council of United Nations. Re-
trieved May 30, 2005, from http://
www.auml.org/auml/documents/

Jennings, N. R. (1999, June/July). Agent-ori-
ented software engineering. In F. J. Garijo &
M. Boman (Eds.), Multi-Agent System Engi-
neering, Proceedings of 9th European Work-
shop on Modelling Autonomous Agents in a
Multi-Agent World (pp. 1-7), Valencia, Spain.
Berlin: Springer-Verlag (LNAI 1647).

Lehman, M. M., & Ramil, J. F. (2001). Rules
and tools for software evolution planning and
management. Annals of Software Engineer-
ing, Special Issue on Software Manage-
ment, 11(1), 15-44.

Lehman, M. M. (1990). Uncertainty in com-
puter application. Communications of the
ACM, 33(5), 584-586.

Shan, L., & Zhu, H. (2003, October). Modelling
and specification of scenarios and agent
behaviour. Proceedings of the IEEE/WIC
Conference on Intelligent Agent Technol-
ogy (IAT’03) (pp. 32-38), Halifax, Canada.

Shan, L., & Zhu, H. (2004a, September). Con-
sistency check in modelling multi-agent sys-
tems. Proceedings of COMPSAC’04 (pp. 114-
121), Hong Kong.

Shan, L., & Zhu, H. (2004b). Modelling coop-
erative multi-agent systems. Proceedings of
the 2nd International Workshop on Grid and
Cooperative Computing (pp. 994-1001),
Shanghai, China. Berlin: Springer-Verlag
(LNCS 3033).

Shan, L., & Zhu, H. (2005). CAMLE: A caste-
centric agent-oriented modelling language and

 15

Caste-Centric Development of Agent-Oriented Information Systems

environment. In R. Choren, A. Garcia, C.
Lucena, & A. Romanovsky (Eds.), Software
engineering for multi-agent systems III: Re-
search issues and practical applications (pp.
144-161). Berlin: Springer-Verlag (LNCS
3390).

Spivey, J. M. (1992). The Z notation: A refer-
ence manual (2nd ed.). Englewood Cliffs, NJ:
Prentice-Hall.

Shen, R., Wang, J., & Zhu, H. (2004). Scenario
mechanism in agent-oriented programming.
Proceedings of APSEC’04 (pp. 464-471),
Busan, Korea.

Wang, J., Shen, R., & Zhu, H. (2005a, July 25-
28). Agent-oriented programming based on
SLABS. Proceedings of COMPSAC’05 (pp.
127-132), Edinburgh, UK.

Wang, J., Shen, R., & Zhu, H. (2005b, Septem-
ber). Caste-centric agent-oriented program-
ming. Proceedings of the 1st International
Workshop on Integration of Software Engi-
neering and Agent Technology at QSIC’05,
Melbourne, Australia.

Wang, J., Shen, R., & Zhu, H. (2005c, July 27-
29). Towards an agent-oriented programming
language with caste and scenario mechanisms.
Proceedings of AAMAS’05, Utrecht, The
Netherlands.

Wood, M. F., & DeLoach, S. A. (2000). An
overview of the multiagent systems engineer-
ing methodology. Proceedings of AOSE 2000
(pp. 207-222).

Wooldridge, M., Jennings, N. & Kinny, D.
(2000). The Gaia methodology for agent-ori-
ented analysis and design. Autonomous Agents
and Multi-Agent Systems, 3(3), 285-312.

Zambonelli, F., Jennings, N., & Wooldridge, M.
(2003). Developing multiagent systems: The
Gaia methodology. ACM Transactions on

Software Engineering and Methodology,
12(3), 317-370.

Zambonilli, F., & Omicini, A. (2004). Chal-
lenges and research directions in agent-ori-
ented software engineering. Autonomous
Agents and Multi-Agent Systems, 9, 253-283.

Zhu, H., & Shan, L. (2005). Caste-centric
modelling of multi-agent systems: The CAMLE
modelling language and automated tools. In S.
Beydeda & V. Gruhn (Eds.), Model-driven
software development, research and prac-
tice in software engineering II (pp. 57-89).
Berlin: Springer-Verlag.

Zhu, H. (2001). SLABS: A formal specification
language for agent-based systems. Interna-
tional Journal of Software Engineering and
Knowledge Engineering, 11(5), 529-558.

Zhu, H. (2002). A growth process model and its
supporting tools for developing Web-based soft-
ware. Acta Electronica Sinica, 30(12A), 2090-
2093.

Zhu, H. (2004, September). Cooperative agent
approach to quality assurance and testing Web
software. Proceedings of COMPSAC’04
(Workshop Papers and Fast Abstracts), the
Workshop on Quality Assurance and Test-
ing of Web-Based Applications
(QATWBA’04) (pp. 110-113), Hong Kong.

Zhu, H. (2005, July). Towards formal reason-
ing about emergent behaviours of MAS. Pro-
ceedings of SEKE’05 (pp. 280-285), Taipei.

Zhu, H. (2006). Towards an agent-oriented
paradigm of information systems. In J.-P.
Rennard (Ed.), Handbook of research on
nature inspired-computing for economics
and management. Hershey, PA: Idea Group
Reference.

Zhu, H., Greenwood, S., Huo, Q., & Zhang, Y.
(2000, July 30). Towards agent-oriented quality

16

Caste-Centric Development of Agent-Oriented Information Systems

management of information systems. Proceed-
ings of the 2nd International Bi-Conference
Workshop on Agent-Oriented Information
Systems at AAAI’2000 (pp. 57-64), Austin,
TX.

