
A Framework for Constructing Peer-to-Peer
Overlay Networks in Java

Rui Shen1, Ji Wang1, Shengdong Zhang1, 2, Siqi Shen1, Pei Fan1
1 National Laboratory for Parallel and Distributed Processing, Changsha, 410073, China

2 School of Computing, University of Leeds, Leeds, LS2 9JT, UK

rui.shen@gmail.com, jiwang@ios.ac.cn, scsszh@leeds.ac.uk

ABSTRACT
Peer-to-peer emerges as a better way for building applications on
the Internet that require high scalability and availability. Peer-to-
peer systems are usually organized into structured overlay net-
works, which provide key-based routing capabilities to eliminate
flooding in unstructured ones. Many overlay network protocols
have been proposed to organize peers into various topologies with
emphasis on different networking properties. However, applica-
tions are often stuck to a specific peer-to-peer overlay network
implementation, because different overlay implementations usual-
ly provide very different interfaces and messaging mechanisms.
In this paper, we present a framework for constructing peer-to-
peer overlay networks in Java. First, networking is abstracted by
interfaces that use URIs to uniformly address peers on different
underlying or overlay networks. Then, asynchronous and syn-
chronous messaging support is built upon these interfaces. Finally,
overlay networking interfaces are sketched to handle specific
issues in overlay networks. We have constructed several overlay
networks in this framework, and built peer-to-peer applications
which are independent of overlay implementations.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-Oriented Program-
ming. D.2.3 [Software Engineering]: Coding Tools and Tech-
niques – object-oriented programming.

General Terms
Languages, Design.

Keywords
Peer-to-peer, Overlay network, Messaging.

1. INTRODUCTION
Peer-to-peer networks are distributed computer architectures that
use diverse connectivity between participants for the sharing of
resources (content, storage, CPU cycles and etc.) on the Internet,
rather than requiring the support of centralized servers [1]. They

emerge as a better way for building applications on the Internet
that require high scalability and availability. On the one hand,
peers act as both clients and servers of resources by coordinating
with each other. As new peers arrive and demand on the system
increases, the total capacity of the system also increases. On the
other hand, the distributed nature of peers also increases availabil-
ity by replicating resources over multiple peers. Peer-to-peer ar-
chitectures are widely used for Internet applications such as file
sharing, video streaming, distributed computing, distributed col-
laboration, military botnet and etc.

Peer-to-peer systems are usually structured into overlay networks
by organizing peers into certain topologies, and employ globally
consistent protocols that can efficiently route a key to the corres-
ponding peers [12]. This key-based routing capability can be used
to eliminate flooding in unstructured peer-to-peer systems. How-
ever, to ensure the consistency of the routing process, the topolo-
gy must be properly maintained when nodes arrive or depart, and
application data also need to be replicated or migrated properly
when the topology changes. Many overlay protocols have been
proposed to organize peers into various topologies with emphasis
on different networking properties, e.g. routing path length (FIS-
SIONE [6]), churn overhead (Bamboo [9]), proximity metric (Pa-
stry [11]) and etc.

There are many implementations of peer-to-peer overlay networks,
e.g. Chord [12], Pastry [11], OpenDHT [10] and etc. However,
applications are often stuck to a specific overlay network imple-
mentation, because different overlay implementations usually
provide very different interfaces and messaging mechanisms.
JXTA is a set of open protocols that enable any connected device
on the network to communicate and collaborate in a peer-to-peer
manner [4], but it does not specify the constructing of overlay
protocols. OverSim is a C++ overlay network simulation frame-
work to evaluate new protocols [2]. Although it provides a key-
based routing interface, applications need to know the details of
the overlay protocol to explicitly handle data replication and mi-
gration.

In this paper, we present a framework for constructing peer-to-
peer overlay networks in Java. First, networking is abstracted by
interfaces that use URIs to uniformly address peers on different
underlying or overlay networks. Then, asynchronous and syn-
chronous messaging (remote method call) support is built upon
these interfaces. Finally, overlay networking interfaces are
sketched to handle specific issues in overlay networks, e.g. key-
based routing, application data replication and migration. We
have constructed several peer-to-peer overlay networks (Chord
[12], FISSIONE [6] and etc.) using this framework, and built

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.
PPPJ’09, August 27-28, 2009, Calgary, Alberta, Canada.
Copyright 2009 ACM X-XXXXX-000-0/00/0000…$5.00.

peer-to-peer applications (e.g. a distributed hash table application,
and a content-based publish/subscribe service) which are inde-
pendent of overlay implementations.

2. PEER-TO-PEER OVERLAY NETWORK
Peer-to-peer overlay networks permit routing messages to destina-
tions not specified by the underlying network address, e.g. IP
address. Instead, the routing destination is determined by a key,
which can be any object that an application might use, e.g. integ-
ers, strings and etc. Overlay networks employ globally consistent
protocols to efficiently route messages based on their keys. To
achieve this key-based routing capability, an overlay network is
usually constructed by specifying: 1) a topology to organize peers,
and its corresponding identifier (ID) space to address peers and
map all possible keys into; 2) distribution of the keys to peers and
the corresponding routing algorithms; 3) maintenance of the to-
pology as well as related application data, when nodes arrive or
depart.

2.1 Topology and ID Space
Peers in an overlay network are organized into a certain topology,
such as ring, mesh, torus and etc. The topology should be dynam-
ic to accommodate changes and self-organize when new nodes
arrive or existing ones depart. The topology is usually associated
with an ID space to identify its nodes, i.e. peers and all possible
keys.

For example, Chord uses a ring topology [12], and its ID space is
the integers from 0 to 2n-1, and the successor of 2n-1 warps back
to 0. Essentially, each peer has a pointer to its nearest successor
peer to keep the ring structure. FISSIONE uses Kautz graph to-
pology [6], and its ID space is Kautz strings with base 2 and
length k. Each peer has pointers to its in-neighbors and out-
neighbors to keep the Kautz graph structure.

The mapping of peers and keys into the ID space is usually based
on some hash function (e.g. SHA-1, MD5 and etc.) to uniformly
distribute them in the ID space, thus these peer-to-peer overlay
networks are also called distributed hash tables (DHTs). The ID
space should be large enough to eliminate the collisions when
hashing a large number of keys. For example, n is usually set to
160 for the Chord ring, and k is usually set to 160 for the FIS-
SIONE Kautz strings.

2.2 Key Distribution and Routing Algorithm
Since the ID space is much larger than the number of peers, the
whole ID space is partitioned by the peers. Thus, keys are distri-
buted to their corresponding peers, i.e. a routing process to a key
will always reach its corresponding peers. Note that a key may be
distributed to more than one peer in some protocol to tolerant
failures such as involuntary node departures.

For example, Chord distributes a key to the peer whose ID is the
nearest successors of the key’s ID among all the other peers [12].
FISSIONE distributes a key to the peer whose ID is the exact
prefix of the key’s ID [6].

Then, the overlay network needs a set of routing algorithms to
ensure the consistency of the key-based routing, i.e. the routing of
a key issued from any peer should always reach the corresponding
peers of the key. Routing algorithms are distributed algorithms
that elaborately construct a routing path on the topology by the

collaboration of multiple peers along the path, using their pointers
to other peers as routing tables.

2.3 Topology and Data Maintenance
During the execution of an overlay network, new nodes may ar-
rive and existing ones may depart. In such occasions, the topology
needs to be properly maintained to ensure the consistency of the
key-based routing by adjusting routing tables of related peers.

For example, in Chord [12], when a new peer arrives, it must
acquire a pointer to its nearest successor peer, and the original
peer pointing to the successor peer should update its pointer to the
new peer instead. When a peer departs, the peer pointing to the
departing peer should update its pointers to the next successor
peer.

Moreover, this adjustment also affects key distributions. For in-
stance, when a new node arrives, it should take over its corres-
ponding keys from their former corresponding peers; when an
existing node departs, it should delegate its corresponding keys to
their new corresponding peers. Thus application data associated
with these keys should also be replicated or migrated to the new
corresponding peers, otherwise they may never be found by the
key-based routing process again.

3. RELATED WORK
Many peer-to-peer overlay networks have been designed and
implemented. They usually provide very different interfaces and
messaging mechanisms, especially for application data replication
and migration.

The official Chord implementation [12] provides interfaces such
as find_successor() to finding the successor of a key, since a
key is distributed to its nearest successor peer. It also supports
asynchronous remote procedure call (RPC) using callback func-
tions. The maintenance of application data must be explicitly
handled, which requires profound understanding of the protocol.

The Pastry implementation [11] provides interfaces to send data
encapsulated in a Message object. Various remote operations are
achieved using their corresponding subclasses of the Message
class. Although applications can use the NodeSetListener in-
terface to handle topology changes, data replication and migration
still need certain understanding of the protocol.

OpenDHT [10] provides interfaces with put() and get() me-
thods similar to hash tables, together with asynchronous RPC
using callback functions. It can replicate/migrate data stored in
the DHT. However, other applications using more complex data
structures such as content-based publish/subscribe service are not
well supported.

All the above projects implement a single overlay protocol, and
they are all based on TCP transport. However, there are frame-
works that can support constructing overlay networks based on
various underlying transport protocols. JXTA is a set of open
protocols that enable any connected device on the network to
communicate and collaborate in a peer-to-peer manner [4], but it
does not specify the constructing of overlay protocols. OverSim is
a C++ overlay network simulation framework to evaluate new
protocols [2]. Although it provides a key-based routing interface,
applications need to know the details of the overlay protocol to
explicitly handle data replication and migration.

Peer-to-peer applications need the ability to run on different un-
derlying network protocols, as well as different overlay networks,
so that they can choose the ones with desired networking proper-
ties. Thus a framework is needed to provide a set of interfaces for
tasks such as mapping arbitrary objects into the ID space, messag-
ing on the underlying networks for distributed algorithms, and
application data replication and migration.

4. FRAMEWORK
In this section, we illustrate our framework to facilitate the con-
structing of peer-to-peer overlay networks in Java1. First, URI is
used to uniformly address peers and resources on various underly-
ing networks and overlay networks, as shown in Figure 1.

Figure 1. Overview of the framework.

A transport layer abstracts end-to-end communications in a net-
work by Transport and TransportListener interfaces, which
can be used to send and receive data in the network.

Then, a messaging module associates a Messenger with the
transport layer to provide both asynchronous and synchronous
calls to remote methods annotated by MessengerCall.

Finally, an overlay transport layer abstracts overlay networks by
OverlayTransport and OverlayListener interfaces, which
support mapping object into ID space, key-based routing, applica-
tion data replication and migration.

4.1 Uniform Resource Identifier
Uniform Resource Identifier (URI) allows different types of re-
source identifiers to be used in the same context, even when the
mechanisms used to access those resources may differ [3]. Since
different network protocols use different addressing schemes, URI
is appropriate to uniformly represent various addresses. It also
allows introducing addresses for new network protocols without
interfering with the way that existing addresses are used.

URI enables uniform addressing of peers and resources via a sep-
arately defined extensible set of naming schemes [3]. How identi-
fications in a scheme are accomplished, assigned, or enabled is
delegated to the corresponding network protocol. A URI is an
identifier consisting of a sequence of characters in the following
form:

In the framework, both underlying network addresses and overlay
network addresses are represented using URIs. For example, a

1 This framework requires Java 1.5 or higher, since it use features

such as the java.util.concurrent.Future interface, ge-
neric types and annotations.

typical TCP address located at port 2000 of node 10.0.0.9 is
represented by the following URI

For an in memory network protocol that simulates networking in a
single JVM using a hash map, a peer identified by string “node1”
is represented as

For an overlay network, the scheme is the protocol name, and the
host part contains the ID of a resource. The following are example
URIs for Chord and FISSIONE, respectively.

Moreover, remote objects used by the messaging module are also
addressed using URIs, by assigning a path in the URI to each
object that will receive remote calls, such as

4.2 Transport Layer
The transport layer abstracts end-to-end communications in a
network by Transport and TransportListener interfaces,
which can be used to send and receive data in the network. Figure
2 shows the class diagram of the transport layer.

*

Figure 2. Transport layer class diagram.

The Transport interface defines common operations for various
network protocols: open or close the network, query the address
of a peer, send data to a target address, manage callback listeners
and etc.

map://node1

tcp://10.0.0.9:2000/test
chord://3938476263636482923847363635252828/dht

chord://3938476263636482923847363635252828
fission://12010210210120121202120101010210

tcp://10.0.0.9:2000

SCHEME://HOST:PORT/PATH#FRAGMENT

The TransportFactory utility class is used to create concrete
transport instances specified by the given URI. For example, in
the following code snippet, TCPTransport and MapTransport
are created by binding to specified addresses.

Then, the open() method must be called to allocate JVM re-
sources (e.g. buffers and sockets), while the close() method will
release the allocated resources. The getAddress() method re-
turns the address of the instance in the network.

The send() method are used to asynchronously send data to
target addresses. The data can be any object that is serializable2.
For example, the following code snippet sends “Hello” to a node
in a TCP network.

To receive data, implementations of the TransportListener
interface should be registered to the Transport instance. The
following code snippet registers a TransportListener imple-
mentation (as an anonymous class).

When data is received, all the registered listeners will be notified
by invoking their receive()method. Moreover, since data send-
ing is asynchronous, when a sending failed, all the registered
listeners will also be notified by invoke their reject() method,
so they can resend the data if necessary.

To facilitate the implementation of the Transport interface, the
framework provides an AbstractTransport class that imple-
ments some common tasks, such as listener management and
callback notification. And several concrete implementations are
provided for commonly used networking protocols.

The TCPTransport class uses Java NIO to implement asyn-
chronous communication for the TCP protocol. The UDPTrans-
port class is a simple implementation for the UDP protocol.

The MapTransport is an in memory network protocol that simu-
lates networking in a single JVM using a hash map. It is useful for

2 The framework indeed supports pluggable object serializers that

transform objects into binary forms. Thus it is not mandatory
for objects to implement the java.io.Serializable inter-
face. However, Java serialization is the default behavior.

simulation purpose and unit testing of overlay network implemen-
tations.

4.3 Messaging Module
Remote method calls are useful for constructing overlay networks,
because distributed routing algorithms, topology maintenance,
and data migration, all need asynchronous or synchronous remote
invocations. Applications may also need remote method calls to
accomplish various tasks.

Although Java RMI provides convenient synchronous remote
method invocations, it is based on TCP/IP network and cannot be
used on custom network protocols. And asynchronous remote
calls are also not well supported.

In this framework, a messaging module associates a Messenger
with the transport layer to provide both asynchronous and syn-
chronous calls to remote methods annotated by MessengerCall.
Figure 3 shows the class diagram of the messaging module.

+call(in target : URI, in method : String, in args : Object...)
+call(in path : String, in target : URI, in method : String, in args : Object...)
+callFuture(in target : URI, in method : String, in args : Object...) : Future<T>
+callFuture(in path : String, in target : URI, in method : String, in args : Object...) : Future<T>
+addHandler(in path : String, in handler : Object) : URI
+removeHandler(in path : String)
+removeAllHandlers()
+getTransport() : Transport
+newCallMessage(in handle : String, in method : String, in args : Object...)
+getFuture(in call : CallMessage) : Future<T>
+receiveMessage(in payload : Object) : boolean
+rejectMessage(in payload : Object) : boolean
-feedReturn(in message : ReturnMessage)

-handlers : Map<String, CallHandler>
-callRegistry : Map<URI, WeakReference<Future<?>>>
-pool : ThreadPoolExecutor

Messenger

<<interface>>
Transport

#handle(in method : String, in args : Object...) : Object

CallHandler

<<annotation>>
MessengerCall

*

#hasFuture() : boolean
#returnResult(in result : Object)
#returnException(in throwable : Throwable)

CallMessage

Figure 3. Messaging module class diagram

The Messenger class provides methods for conducting asyn-
chronous and synchronous remote calls based on the transport
layer. Objects with annotated methods are registered to the Mes-
senger as CallHandlers. Remote calls are concurrently
processed by a thread pool, and they return Futures that serve as
the placeholder of the potential return values.

A Messenger object is associated with each Transport in-
stance. The following code snippet acquires the associated object.

The addHandler() method is used to register objects with paths.
A path uniquely identifies an object registered in a messenger. In
the following code snippet, two objects are registered to “/test”
and “/calc”, respectively.

messenger.addHandler("/test", new TestHandler());
messenger.addHandler("/calc", new CalcHandler());

Messenger messenger = transport.getMessenger();

transport.addTransportListener(
new TransportListener() {
public void receive(URI source, Object payload) {
// receive a object from the source node

}

public void reject(URI target, Object payload) {
// a send to the target node is failed

}
}

);

transport.send(
URI.create("tcp://10.0.0.9:2000"),"Hello");

Transport transport;
transport = TransportFactory.createTransport(

URI.create("tcp://10.0.0.9:2000"));

transport = TransportFactory.createTransport(

URI.create("map://node1"));

Any object can be registered to a messenger, and methods that
can be called remotely should be explicitly annotated by Mes-
sengerCall. Such as the sayHello() method in the following
code snippet.

Asynchronous remote calls can be invoked by the call() me-
thods with the address of the remote object, name of the method,
and required parameters. The following code snippet calls the
above sayHello() method with a parameter “World!”,

The same method can also be invoked by specifying the full ad-
dress of the object in a single URI.

The callFuture() methods are similar to the call() methods,
except that they immediately return Future objects as the place-
holders of any potential return values. Then the Future’s get()
method can be invoked to wait for the remote call to return, i.e.
making the call synchronous. For example,

The following is another example that waits three seconds for the
return value, or a timeout exception will be thrown (the exception
handling code is omitted).

In fact, the Messenger class keeps track of all remote calls and
their Future objects in an internal data structure, to correlate
return messages to corresponding future objects. However, it is
possible that some return messages may be lost and never return.
To eliminate memory leaking, the Future objects should be ap-
propriately released. In this framework, we use WeakReference
in the internal data structure to make unreferenced Future ob-
jects garbage collectable and automatically release them at finali-
zation. Thus alleviate the burden of the programmers.

The Messenger class also provides some advanced APIs, e.g.
newCallMessage(), getFuture() and receiveMessage(), to
customize the delivery and invocation of CallMessages. For
example, a call message can be explicitly constructed in the fol-
lowing code snippet without specifying the target address:

Then, the call object can be delivered to other nodes via certain
algorithms, e.g. key-based routing algorithms. And the call can be
explicitly invoked by using the receiveMessage() method.

4.4 Overlay Transport Layer
The overlay transport layer abstracts overlay networks by Over-
layTransport and OverlayListener interfaces, it extends the
transport layer with additional support for mapping object into ID
space, key-based routing, application data replication and migra-
tion. Figure 4 shows the class diagram of the overlay transport
layer.

<<interface>>
Transport

+getAddress(in key : Object) : UDPTransport
+addOverlayListener(in listener : OverlayListener)
+removeOverlayListener(in listener : OverlayListener)
+removeAllOverlayListeners()
+getLinkAddress() : URI
+getTransport() : Transport

<<interface>>
OverlayTransport

+forward(in target : URI, in payload : Object, in next : URI) : Object
+populate(in filter : OverlayFilter, in remove : boolean) : List<?>

<<interface>>
OverlayListener

+inrange(in key : Object) : boolean
+inrange(in address : URI) : boolean

<<interface>>
OverlayFilter

*

+fireForward(in target : URI, in payload : Object) : Object
+firePopulate(in filter : OverlayFilter, in remove : boolean) : List<?>

-listeners : List<OverlayListener>
#transport : Transport

<<abstract>>
AbstractOverlayTransport

<<implementation>>
ChordTransport

<<implementation>>
FissioneTransport

<<abstract>>
AbstractTransport

Figure 4. Overlay transport layer class diagram.

The OverlayTransport interface extends the Transport inter-
face, so it can be used in the same way as described in section 4.2.
However, the OverlayTransport interface also defines overlay
specific operations: get the address of a key object, managing
overlay related callback listeners, and acquire the address and
Transport instance of the underlying network.

Since an overlay network needs an underlying network to operate
on, it is constructed with a Transport instance that represents
the underlying network. Moreover, peers usually join an overlay
network by contacting some well-known peers, or seeds. In the
following code snippet, a ChordTransport instance is con-
structed by specifying the underlying transport object, the seeds
and many other Chord protocol specific parameters.

OverlayTransport overlay = new ChordTransport(
transport, 80, 2, 10000, 100000, 100000, 300000,

seeds);

// if payload is a remote call, invoke it
if (! messenger.receiveMessage(payload)) {

// otherwise, it’s not a call
}

messenger.call(
URI.create("tcp://10.0.0.9:2000/test"),
 "sayHello", "World!")

public class TestHandler {

@MessengerCall
public void sayHello(String name) {
System.out.println("Hello, " + name);

}
}

CallMessage call = messenger.newCallMessage("/calc",
"sqrt", 100);

Future<Double> future = messenger.getFuture(call);

Future<Double> future =
messenger.callFuture("/calc", addr, "sqrt", 100);

double sqrt = future.get(3, TimeUnit.SECONDS);

Future<Void> future = messenger.callFuture("/test",
addr, "sayHello", "World!");

future.get();

URI addr = URI.create("tcp://10.0.0.9:2000");
messenger.call("/test", addr, "sayHello", "World!");

The open() method must be called for a node to join the overlay
network by contacting seeds via the underlying transport object,
while the close() method will detach the current node from the
overlay network. The getAddress() method maps a key object
to an address in the ID space, while the getLinkAddress()
method returns the address in the underlying network.

As described in section 4.2, we can add TransportListener to
receive data, and use the send() method to send data in the over-
lay network, i.e. key-based routing. As shown in the following
code snippet:

The messaging module can also be used in the same way as de-
scribed in section 4.3. For example:

There is one complication here. Since keys may be distributed to
more than one peers (in case of data replication), the send(),
call() and callFuture() methods may actually notify mul-
tiple peers. This represents the high availability of overlay net-
works. In this case, any related Future objects will wait for the
first return messages.

To support the replication and migration of application data,
OverlayListener and OverlayFilter interface is designed to
handle overlay specific callback notifications. The following code
snippet registers an OverlayListener implementation (as an
anonymous class).

The forward() method is used to notify nodes along the path of
a key-based routing process, right before sending data to the next
node. It gives applications the opportunity to participate in the
routing process to accomplish some application specific tasks, e.g.
changing the content of the data.

The populate() method is used to collect application data that
need to be replicated or migrated when nodes arrive or depart.
Since the data are in the application and only the overlay network
knows what kind of data should be replicated or migrated, they

must work together to accomplish the task. So when invoking the
populate() method, the overlay network will provide an Over-
layFilter instance that has the knowledge of what kind of data
should be collected. It also tells the application whether the col-
lected data need to be removed, i.e. either replication or migration.

An OverlayFilter interface defines inrange() methods to tell
whether a key is in some desired range in the ID space. For in-
stance, the following code is the Chord implementation of the
OverlayFilter that tells whether a key is in a certain interval
(start, end] on the ring.

To facilitate the implementation of the OverlayTransport in-
terface, the framework provides an AbstractOverlayTrans-
port class that implements some common tasks, such as listener
management and callback notification. Several overlay network-
ing protocols are implemented, e.g. ChordTransport and Fis-
sioneTransport, and they can run on various underlying net-
works.

5. APPLICATIONS
Based on this framework, peer-to-peer applications can not only
be easily built, but also be independent to the overlay implemen-
tations. In this section, we illustrate the building of two typical
applications: a distributed hash table application and a content-
based publish/subscribe service.

5.1 Distributed Hash Table Application
Distributed Hash Tables (DHTs) are distributed systems that pro-
vide operations similar to a hash table, i.e. (key, value) pairs can
be stored (put) to the DHT and any participating node can effi-
ciently get or remove the value associated with the given key.

Building DHT applications using key-based routing on peer-to-
peer overlay networks is straightforward, just augmenting each
peer with a local repository to store its corresponding (key, value)
pairs. The local repository can be in the memory, in a file, or even
in a database. Anyway, the (key, value) pairs may need to be
replicated or migrated when nodes arrive or depart.

The following source code of the DHTApp class is a simple im-
plementation that stores (key, value) pairs in a HashMap object. It
provides put(), get(), and remove() methods to operate on
the (key, value) pairs. Similar applications can be built using oth-
er local repositories.

Messenger messenger = overlay.getMessenger();
messenger.addHandler("/test", new TestHandler());

// on another peer
URI addr =

URI.create("chord://1050136146584401999253070");
messenger.call("/test", addr, "sayHello", "World!");

public class ChordFilter implements OverlayFilter {
private final ChordID start, end;

 public ChordFilter(ChordID start, ChordID end) {

this.start = start;
this.end = end;

 }

 public boolean inrange(Object key) {

ChordID id = start.hash(key);
return id.between(start, end) || id.equals(end);

 }

 public boolean inrange(URI address) {

ChordID id = ChordID.parse(address);
return id.between(start, end) || id.equals(end);

 }
}

overlay.addOverlayListener(new OverlayListener() {
public Object forward(URI target,

Object payload, URI next){
// process the payload on the routing nodes
return payload;

}

public List<?> populate(OverlayFilter filter,

boolean remove) {
// use the filter to get a list of object to be
// replicated or migrated
return ...;

}
});

overlay.addTransportListener(
new TransportListener() { ... });

URI addr = overlay.getAddress("any key object");
overlay.send(addr, "Hello, World!");

The DHTApp class can be constructed using any implementation
of the OverlayTransport interface. During construction, it
registers itself as an OverlayListener to the overlay instance.
An inner class DHTHandler object is registered (as “dht”) to the
messaging module associated with the overlay instance to handle
remote method calls from other peers.

In the put(key, value) method, first the key is mapped to an
address in the ID space by the overlay.getAddress(key)
method, and then a remote call is initiated to invoke the put(key,
value) method of the registered DHTHandler object at the ad-
dress. The remote call returns a Future object, whose get()
method is invoked immediately to wait for the result, making the
call synchronous. Similar processes occur in the get(key) and
remove(key) methods.

Moreover, data replication and migration can be easily achieved
by properly implementing the populate() method of the Over-
layListener interface. The data that need to be replicated or
migrated are wrapped into CallMessage objects which will in-
voke the put(key, value) method of the registered DHTHand-
ler object on the nodes that will be in charge of the data.

As we can see, the DHT application does not need to know any
details of the overlay implementation, while it can still employ
the full power of peer-to-peer overlay networks.

5.2 Content-based Publish/Subscribe Service
Content-based publish/subscribe (pub/sub) is a system in which
messages are only delivered to a subscriber if the content of those
messages match criteria defined by the subscriber. Thus publish-
ers and subscribers are fully decoupled in a pub/sub system.

The following is part of the PubSub class that implements a peer-
to-peer content-based pub/sub system similar to [13]. This code
snippet highlights the replication and migration of subscription
data.

The PubSub class can be constructed using any implementation
of the OverlayTransport interface. During construction, it
registers itself as an OverlayListener to the overlay instance.
An inner class PubSubHandler object is registered (as “/pubsub”)
to the messaging module associated with the overlay instance to
handle remote method calls from other peers.

In the subscribe(crt, listener) method, first a key is ob-
tained from the criteria object and is mapped to an address in the
ID space, and then a remote call is initiated to invoke the sub-
scribe(sub) method of the registered PubSubHandler object
at the address.

public class PubSub implements OverlayListener {
private OverlayTransport overlay;
private Messenger messenger;
private SubscriberList subscribers;

public PubSub(OverlayTransport overlay) {
this.overlay = overlay;
this.messenger = overlay.getMessenger();

overlay.addOverlayListener(this);
messenger.addHandler("/pubsub",

new PubSubHandler());
 }
 ...

public class DHTApp implements OverlayListener {
private OverlayTransport overlay;
private Messenger messenger;
private Map map =

Collections.synchronizedMap(new HashMap());

public DHTApp(OverlayTransport overlay) {
this.overlay = overlay;
this.messenger = overlay.getMessenger();
overlay.addOverlayListener(this);
messenger.addHandler("/dht", new DHTHandler());

}

public void exit() {
messenger.removeHandler("/dht");
overlay.removeOverlayListener(this);

}

public Object get(Object key) throws
 InterruptedException, IOException, ExecutionException {
return messenger.callFuture("/dht",
overlay.getAddress(key), "get", key).get();

}

public Object put(Object key, Object value) throws
 IOException, InterruptedException, ExecutionException {
return messenger.callFuture("/dht",
overlay.getAddress(key),"put",key,value).get();

}

public Object remove(Object key) throws

 IOException, InterruptedException, ExecutionException {
return messenger.callFuture("/dht",
overlay.getAddress(key),"remove", key).get();

}

public Object forward(URI target,

Object payload, URI next){
return payload;

}

public List<?> populate(OverlayFilter filter,

boolean remove) {
List list = new ArrayList();
for(Iterator<Entry> i=map.entrySet().iterator();

i.hasNext();) {
Entry e = i.next();
if (filter.inrange(e.getKey())) {
list.add(messenger.newCallMessage("/dht",

"put", e.getKey(), e.getValue()));
if (remove) i.remove();

}
}
return list;

}

// export remote methods from an inner class
public class DHTHandler {
@MessengerCall
public Object put(Object key, Object value) {
return map.put(key, value);

}

@MessengerCall
public Object get(Object key) {
return map.get(key);

}

@MessengerCall
public Object remove(Object key) {
return map.remove(key);

}
}

}

In the populate() method, subscription data that need to be
replicated or migrated are wrapped into CallMessage objects
which will invoke the subscribe(sub) method of the regis-
tered PubSubHandler object on the nodes that will be in charge
of the subscription. Again, based on this framework, the pub/sub
service does not need to know any details of the overlay imple-
mentation.

6. CONCLUSIONS AND FUTURE WORK
We have presented a framework for constructing peer-to-peer
overlay networks in Java. First, networking is abstracted by the
transport layer that uses URIs to uniformly address peers on dif-
ferent underlying or overlay networks. Then, a messaging module
is associated with the transport layer to support both asynchron-
ous and synchronous remote method calls by using futures. Final-
ly, the overlay transport layer is sketched to handle the additional
issues in overlay networks, e.g. key-based routing, data replica-
tion and migration. Several overlay network protocols have been
implemented in this framework. And using this framework, peer-
to-peer applications such as distributed hash table applications
and content-based publish/subscribe services, have been con-
structed, which are independent of the overlay implementations.
The sources presented in this paper are available online at
http://overlay.sourceforge.net/.

We are working on implementing more transport layer protocols
such as HTTP and UDT [5], as well as overlay network protocols
such as Pastry [11], Kademlia [8] and etc. We are also planning to
integrate application layer multicast [7] into the framework.

7. ACKNOWLEDGMENTS
This work is partially supported by the National Basic Research
Program of China (973) under Grant No. 2005CB321802 and
Natural Science Foundation of China under Grant No. 90612009.

8. REFERENCES
[1] Androutsellis-Theotokis, S. and Spinellis, D. A survey of

peer-to-peer content distribution technologies. ACM Compu-
ting Surveys, 36(4): 335-371, 2004.

[2] Baumgart, I., Heep, B. and Krause, S. OverSim: A Flexible
Overlay Network Simulation Framework. In Proc. 10th
IEEE Global Internet Symposium (GI’07), Anchorage, AK,
USA, May 2007. (http://www.oversim.org)

[3] Berners-Lee, T., Fielding, R. and Masinter, L. Uniform Re-
source Identifier (URI): Generic Syntax. Internet Standard
RFC 3986, 2005. (http://tools.ietf.org/html/rfc3986)

[4] Gong, L. JXTA: a network programming environment. IEEE
Internet Computing, 5(3): 88-95, 2001. (http://jxta.org)

[5] Gu, Y. and Grossman, R.L. UDT: UDP-based Data Transfer
for High-Speed Wide Area Networks. Computer Networks,
Elsevier, 51(7): 1777-1799, 2007.

[6] Li, D., Lu, X. and Wu, J. FISSIONE: a scalable constant
degree and low congestion DHT scheme based on Kautz
graphs. In Proc. 24th Annual Joint Conf. of the IEEE Com-
puter and Comm. Societies (INFOCOMM’05), IEEE CS
Press, pp. 1677-1688, 2005.

[7] Kostas, K. and May, M. Application-Layer Multicast. Peer-
to-Peer Systems and Applications, Springer-Verlag, LNCS
3485: 157-170, 2005.

[8] Maymounkov, P. and Mazieres, D. Kademlia: A Peer-to-
Peer Information System Based on the XOR Metric. In Proc.
1st Int’l Workshop on Peer-to-Peer Systems (IPTPS’02),
Springer-Verlag, LNCS 2429: 53-65, 2002.

[9] Rhea, S., Geels, D., Roscoe, T. and Kubiatowicz, J. Han-
dling Churn in a DHT. In Proc. USENIX Annual Technical
Conference (USENIX’04), 127-140, 2004.

[10] Rhea, S., Godfrey, B., Karp, B., Kubiatowicz, J., Ratnasamy,
S., Shenker, S., Stoica, I. and Yu, H. OpenDHT: A Public
DHT Service and Its Uses. In Proc. 2005 Conf. on Applica-
tions, Technologies, Architectures, and Protocols for Com-
puter Comm. (SIGCOMM'05), ACM Press, pp. 73-84, 2005.
(http://www.opendht.org/)

[11] Rowstron, A. and Druschel, P. Pastry: Scalable, Decentra-
lized Object Location, and Routing for Large-Scale Peer-to-
Peer Systems. In Proc. 2nd IFIP/ACM Int’l Conf. on Distri-
buted Systems Platforms (Middleware'01), Springer-Verlag,
LNCS 2218: 329-350, 2001. (http://www.freepastry.org)

[12] Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R., Kaa-
shoek, M.F., Dabek, F. and Balakrishnan, H. Chord: a scala-
ble peer-to-peer lookup protocol for internet applications.
IEEE/ACM Transactions on Networking, 11(1): 17-32, 2003.
(http://pdos.csail.mit.edu/chord/)

[13] Zhu, Y. and Hu, Y. Ferry: a P2P-based architecture for con-
tent-based publish/subscribe services. IEEE Trans. on Paral-
lel and Distributed Systems, 18(5): 672-685, 2007.

...
public Subscription subscribe(EventCriteria crt,

EventListener listener) throws
IOException,InterruptedException,ExecutionException{
URI addr = overlay.getAddress(criteria.getKey());
Future<Subscriber> future = messenger.callFuture(

"/pubsub", addr, "subscribe",
new Subscriber(addr, crt, listener));

return future.get();
}

 public List<?> populate(OverlayFilter filter,

boolean remove) {
List<CallMessage> list =

new ArrayList<CallMessage>();

for(Iterator<Subscriber>i=subscribers.iterator();
i.hasNext();) {

Subscriber sub = i.next();
if (filter.inrange(sub.getAddress())) {
CallMessage call = messenger.newCallMessage(

"/pubsub", "subscribe", sub);
list.add(call);
if (remove) i.remove();

}
}
return list;

}

// export remote methods from an inner class

 public class PubSubHandler {
@MessengerCall
public Subscription subscribe(Subscriber sub) {
return subscribers.add(sub);

}
...

}
}

