
Agent Oriented Programming based on SLABS ∗

Ji Wang and Rui Shen
National Laboratory for

Parallel and Distributed Processing
Changsha, P. R. China

jiwang@mail.edu.cn, shenrui98@yahoo.com

Hong Zhu
Department of Computing
Oxford Brookes University

Oxford, OX33 1HX, United Kingdom
hzhu@brookes.ac.uk

Abstract

SLABS is a formal specification language designed for
modular and composable specification of multi-agent sys-
tems. This paper reports our attempts to support SLABS
at the level of programming languages. A program-
ming language, SLABSp, is presented to support two dis-
tinguished mechanisms, namely caste and scenario, in
caste-centric methodology of agent-oriented software de-
velopment. Based on Java platform, the SLABSp has been
implemented by compiling the programs into Java with the
multi-agent runtime environment.

1. Introduction

Agent technology has been an active research area in
academy and industry in the past two decades [10, 11].
A number of agent-based software systems have been de-
veloped and on the service of real applications. In recent
years, many existing researches have been engaged on agent
oriented software development methodologies to address
the problems in the analysis, specification and design of
agent-based systems. However, the programming languages
based on agent oriented methodologies have not been ex-
plored as desired, especially from the perspective of soft-
ware engineering. Almost all agent-based systems are de-
veloped in programming languages of other paradigms such
as in object-oriented, logic or functional programming lan-
guages. The main features of agents and multi-agent sys-
tems are not effectively or efficiently supported by such pro-
gramming languages to fully realize their advantages. For
example, it is awkward and clumsy to implement agent’s
capability of collaboration with each other in complicated

∗ Supported by the National NSF of China under grant No. 60233020
and 90104007, the National High Technology R&D 863 Programme
of China under grant No. 2002AA116070, and Program for New Cen-
tury Excellent Talents in University.

protocols, the perception of situations in the environment
and taking actions actively and proactively, etc. by using
message based communications and object method invoca-
tions in object-oriented language facilities. The aim of the
research reported in this paper is to design and implement
new language facilities that directly support agent orienta-
tion. It reports a programming language called SLABSp.

SLABSp is based on the formal specification language
SLABS [13, 14, 15, 16], which was designed for modu-
lar and composable specifications of multi-agent systems,
where agents are the active and persistent computational en-
tities that encapsulate data, operations and behavior proto-
cols and are situated in their designated environments. In
SLABS’ meta-model, caste was proposed as the classifier of
agents. A caste defines a collection of agents that have the
same behavior and structural characteristics. Scenario was
proposed as a language facility that describes the situation
of the agent’s environment so that agent’s behaviors can be
defined in the context of environment situations. Therefore,
the concepts of caste and scenario play a crucial role in the
caste-centric methodology presented in SLABS as an ap-
proach to agent oriented software development. It is desir-
able to introduce and implement caste and scenario mecha-
nisms in agent-oriented programming languages. An initial
solution to the mechanism of scenario in programming lan-
guages has been presented in [8].

In this paper, we propose a programming language
SLABSp to support caste and scenario mechanisms
in agent-oriented programming, and reports its imple-
mentation. The remainder of the paper is organized as
follows. Section 2 presents the SLABSp programming lan-
guage with the focus on the novel language facilities,
castes and scenarios. Section 3 describes the implemen-
tation of SLABSp, including the compiler and the run-
time support. The examples are demonstrated in section 4.
A comparison of the related work is given in section 5. Fi-
nally, section 6 concludes the paper with a summary of
the main contributions of the work reported in the pa-
per and a discussion of future work.

Proceedings of the 29th Annual International Computer Software and Applications Conference (COMPSAC’05)

0730-3157/05 $20.00 © 2005 IEEE

2. SLABSp programming language

SLABSp extends the Java programming language aim-
ing at supporting the caste-centric methodology of agent
oriented software development [14], whose key concepts
are castes and scenarios.

2.1. Program structure

Agent/Caste SLABSp regards a multi-agent system as a
set of agents. The agents are defined as encapsulations of
states, actions and behavior rules, and each agent has its
own rules that govern its behaviors. SLABSp organizes
agents in the system into castes. Just as classes in object ori-
ented languages to abstract a set of objects with the same
pattern of data and methods, castes are designed to ab-
stract a set of agents with the same characteristics of states,
actions, behaviors and environments. However, in contrast
with that an object is bound to its class statically and persis-
tently, an agent is desired to be bound to its castes dynami-
cally, i.e. it may join to or quit from a caste at runtime. The
concept ‘caste’ has been presented in [14] and has been ex-
amined in [13, 16] to justify its feature as a step beyond ob-
ject orientation.

Each agent can join multiple castes. When an agent joins
a caste, it will copy all elements of the caste, including the
states, actions, and behavior rules. Currently, when multiple
castes are joined, the name/behavior conflictions of these el-
ements should be avoided. The environment of an agent is
the set of agents in the system that can affect its behavior.

The EBNF definition of SLABSp is given below. Note
that ‘Java-Import’ is the same as Java’s import declaration,
and ‘Java-Definition’ can be any declaration clause of Java,
such as class declaration and method declaration. ‘Java-
Code’ is the sequence of Java statements, with the keywords
‘#’ and ‘@’ to indicate agent’s state and action elements, re-
spectively.

Agent ::=
(Java-Import)*
‘agent’ name [‘join’ Caste-Id (‘,’ Caste-Id)*]

‘{’(Element | Java-Definition)* ‘}’

Caste ::=
(Java-Import)*
‘caste’ name [‘join’ Caste-Id (‘,’ Caste-Id)*]

‘{’ (Element | Java-Definition)* ‘}’

Element ::=
State-Element | Action-Element | Behavior-Element

State A state element can be ‘internal’ to the agent or be
observable for other agents. A state element must have read
and write operations, i.e. ‘Getf’ and ‘Setf’ clauses, for the
representation of complex, multi-dimensional values or ob-
jects.

State-Element ::=
[‘internal’] ‘state’ Type id ‘(’ Parameter-List ‘)’

‘{’ (Java-Definition | Getf | Setf)*‘}’

Getf ::= ‘get’ ‘{’ Java-Code ‘}’

Setf ::= ‘set’ ‘{’ Java-Code ‘}’

Action An action element can also be ‘internal’ to the agent
or be observable for other agents. The ‘do’ clause will be ex-
ecuted when the action is invoked.

Action-Element ::=
[‘internal’] ‘action’ id ‘(’ Parameter-List ‘)’ ‘{’

‘do’ ‘{’ Java-Code ‘}’
(Java-Definition)*

‘}’

Behavior rules A behavior element describes a behavior
rule. The ‘do’ clause of a behavior element will be executed
if the scenario specified in ‘when’ clause is satisfied.

Behavior-Element ::=
‘behavior’ id ‘{’

‘do’ ‘{’ Java-Code ‘}’
(Java-Definition)*

‘}’ ‘when’ ‘{’ [Scenario] ‘}’

Scenarios Scenario presented in [4, 12, 14] is employed to
describe a set of typical combinations of the behaviors of
related agents in a multi-agent system. Its most fundamen-
tal characteristics is to put events in the context of the his-
tory of behavior. A basic form of scenario description is a
pattern of an agent’s behavior. In SLABSp, the description
of scenarios allows the reference of the observer agent it-
self by ‘this’.

Scenario ::=
Agent-Id ‘:’ Pattern

| Relation-Expression
| ‘for’ (number | ‘all’) Caste-Id ‘:’ Pattern
| Scenario ‘and’ Scenario
| Scenario ‘or’ Scenario
| ‘not’ Scenario
| ‘(’ Scenario ‘)’
| ‘this’ ‘:’ Pattern

A scenario can describe the situations that a specific
agent behaves in a certain pattern, a number of or all agents
of a caste behave in certain pattern, and logic combinations
of such situations and relational expressions that contain
such descriptions. Pattern is used to specify the sequence
of observable state changes and observable actions. Once
an agent’s state is changed or an observable action is taken,
the pattern will be evaluated by a Pattern Process Machine
to decide whether an action should be taken; see [8] for de-
tails. The atomic action ‘any’ can be matched by any ac-
tions, and the ‘id’ can be matched by the action whose name
is the same as ‘id’.

Proceedings of the 29th Annual International Computer Software and Applications Conference (COMPSAC’05)

0730-3157/05 $20.00 © 2005 IEEE

Pattern ::= ‘[’ Sequence-Unit (‘,’ Sequence-Unit)* ‘]’

Sequence-Unit ::=
Action-Pattern | ‘!’ State-Assertion

Action-Pattern ::= Atomic-Action [‘ˆ’ number]

Atomic-Action ::=
‘any’ | id | id ‘(’ Parameter-Value-List ‘)’

2.2. Core castes

The caste language facility enriches the expressiveness
and scalability of agent programs. The following examples
show how caste can be used to define various other language
facilities in SLABSp. These castes can be regarded as the
core library of all applications of multi-agent systems writ-
ten in SLABSp.

The core caste Agent shown in Figure 1 defines the ba-
sic actions of agents that enable them to start executions on
the runtime platform. The internal state name represents the
agent’s name. The internal state started shows whether the
agent has started running. Behavior rule fireStartup makes
the agent take action start when it starts running on the plat-
form, which can be observed by other agents using scenar-
ios. Each agent in SLABSp joins caste core.Agent either ex-
plicitly or implicitly.

// base caste every agent joins
caste core. Agent {

// the name of the agent as a state
internal state String name(){

get { return getAgent().getName(); }
set { /* name is read-only*/ }

}
// whether the agent has been started
internal state boolean started(){

boolean v = false;
get { return v; }
set { v = value; }

}
// start action
action start(){

do { #started() = true;}
}
// rule: when agent start, fire start action
behavior fireStartup(){

do { @start(); }
} when {

this: [! #started() = false]
}

}

Figure 1. Base caste for all agents.

As shown in Figure 2, the core caste Mutable declares two
actions (joinCaste and quitCaste), which use methods of the
underlying Java classes to accomplish dynamic caste join-
ing and quitting. Agents of core.Mutable has the ability to
join and quit castes at runtime.

The core caste Social defines a caste that provides a di-
rect communication mechanism as shown in Figure 3. It de-
clares two actions (send and recv) to send and receive mes-
sages respectively, which can be implemented by using Java

// agents of this caste can dynamically
// join/quit castes
caste core.Mutable {

// join caste action
action joinCaste(String casteName){
do {

getAgent().dynamicJoin(casteName);
}

}
// quit caste action
action quitCaste(String casteName){
do {

getAgent().dynamicQuit(casteName);
}

}
}

Figure 2. Caste core.Mutable.

libraries. Other communication mechanisms can also be de-
fined similarly to implement direct communication between
agents, such as message passing, remote procedure call, file
system, email service and etc. However, the uses of such
communication mechanisms are not encouraged. As shown
in section 4, the scenarios and behavior rules provide a com-
munication mechanism at a higher level of abstraction and
more suitable for agent-oriented style of programming.

// agents of this caste can communicate
// directly with other social agents
caste core.Social {

// send message
action send(Message message){
do {

getAgent(). send (message);
}

}
// receive message
action recv(Message message){
do {

getAgent().receive (message);
}

}
}

Figure 3. Caste core.Social

3. Compiler and runtime platform

The system supporting SLABSp language is based on
Java. It includes the SLABSp library, the SLABSp com-
piler, the underlying classes (Java Agent Components), and
the SLABSp runtime platform, as shown in Figure 4.

3.1. SLABSp library

The SLABSp library contains a set of standard castes
defined in SLABSp language, such as the core castes dis-
cussed in section 2.2. These castes are either for defining
common states, actions and behaviors of specific kinds of
agents, such as the core caste Agent, which is the caste ev-
ery agent joins, or for wrapping some complex operations
to provide high level facilities, such as the core caste Muta-

Proceedings of the 29th Annual International Computer Software and Applications Conference (COMPSAC’05)

0730-3157/05 $20.00 © 2005 IEEE

SLABSp
Library

SLABSp
Source(*.p)

Java Source
(*.java)

Java Agent
Components

SLABSp

Compiler

Java Bytecode
(*.class)Java

Compiler

Java Virtual Machine

SLABSp
Runtime Platform

Java Virtual Machine

SLABSp
Runtime Platform

Figure 4. Overview of SLABSp.

ble, which provides actions to support dynamic caste join-
ing and quitting.

3.2. Underlying classes

The underlying classes (Java Agent Components) are de-
fined to serve as the semantics of SLABSp. In this model, an
agent’s structure can be changed at runtime, which makes
dynamic caste joining and quitting possible.

In Figure 5, JacAgent represents an agent definition in
SLABSp. JacCaste represents a caste definition, and it main-
tains a set of the agents that have joined it. JacAgent and Jac-

Caste have the same super class JacUnit, which has a name
and a set of castes to join, and maintains a composition of
JacState, JacAction and JacBehavior. The listeners of JacState

and JacAction can be notified when the state changes or ac-
tion is invoked, driving the pattern processing in scenario
mechanism. JacBehavior uses a scenario object to process the
scenario declared in the ‘when’ clause of the behavior rule.

Figure 5. Main underlying classes.

Figure 6 shows the underlying scenario classes. Inter-
face JacScenario defines the methods that all scenario classes
should implement. AgentScenario processes the scenario fo-
cused on a single agent, and CasteScenario processes the
scenario focused on agents of a specific caste. AndScenario,
OrScenario and NotScenario process the compound scenarios.

Figure 6. Underlying scenario classes.

3.3. Compiling SLABSp programs

The SLABSp compiler translates SLABSp source code
together with the SLABSp library into Java. A SLABSp
source file contains the declaration of exactly one agent or
caste. It is compiled to a package of Java classes, which is
then compiled together with Java Agent Components.

3.4. Runtime support

The runtime platform to execute SLABSp programs pro-
vides codebase management, naming service, agent lifecy-
cle management, containers of agents and castes, dynamic
caste joining and quitting support, and communication in-
frastructure, as shown in Figure 7.

Platform

Naming

Distribute

Security

Codebase

Distribute

Lifecycle

Container

Mutable Caste

Communication

Administration

Console

Figure 7. Runtime platform.

It manages the codebase to load necessary Java classes
of the compiled agent or caste. The naming service is used
to lookup the agent or caste by its qualified name, which
is accomplished with the help of agent container and caste
container. The agent container also manages the lifecycle of
agents. When an agent dynamically joins or quits a caste,
the platform should be aware of its situations, and keep ev-
erything consistent.

4. Examples

In this section, we illustrate by two examples the pro-
gramming style that SLABSp supports.

Proceedings of the 29th Annual International Computer Software and Applications Conference (COMPSAC’05)

0730-3157/05 $20.00 © 2005 IEEE

4.1. Teacher or student

Agents of core.Mutable can use action joinCaste and quit-

Caste to join and quit a caste at runtime. In Figure 8, there
is an agent named Harry of caste Person and core.Mutable. Be-
havior rule daytime defines when the Sun (which is an agent
here) takes action rise, Harry will quit caste Student and join
caste Teacher; Behavior rule night defines when the Sun takes
action fall, Harry will quit caste Teacher and join caste Student.

// Harry is a teacher in the daytime,
// but he goes studying at night.
agent Harry join Person, core.Mutable {
behavior daytime(){
do {

@quitCaste(“Student”);
@joinCaste(“Teacher”);

}
} when { Sun: [@rise()] }

behavior night(){
do {

@quitCaste(“Teacher”);
@joinCaste(“Student”);

}
} when { Sun: [@fall()] }

}

Figure 8. Agent Harry in SLABSp

This simple example shows that SLABSp’s program-
ming style enable natural description of agent’s perception
of the environment and then take appropriate actions rather
than driven by messages.

4.2. Vote backers

The backers can support one of the two candidates:
Tommy and Jerry. Caste Backer declares two actions (sup-

portTommy and supportJerry) and one behavior rule (turnRan-

dom). Behavior rule turnRundom makes the agent randomly
choose a candidate to support after it starts running, as
shown in Figure 9(a).

Caste PityBacker in Figure 9(b) extends caste Backer, and
declares two more behavior rules (turnToJerry and turnTo-

Tommy). Behavior rule turnToJerry makes the agent take ac-
tion supportJerry when Jerry is less supported, and behavior
rule turnToTommy makes the agent take action supportTommy

when Tommy is less supported. Caste RitzyBacker in Fig-
ure 9(c) adopts a symmetrical strategy compared to caste
PityBacker.

When there are only agents of caste Backer in the runtime
platform, the support ratio is fifty-fifty. When there are only
agents of caste PityBacker, because they support the weaker
one, the final support ratio is also fifty-fifty. But when there
are only agents of caste RitzyBacker, all the agents will sup-
port one side.

This example further demonstrates how agents perceive
the behaviors of other agents to adjust their own actions ac-

cordingly. Such behaviors would be less easier to imple-
ment in object oriented languages directly especially when
agents can dynamically join the system and quit from the
system.

It is worth noting that in both of the above examples,
direct message-based communications or method invoca-
tions are replaced by scenarios in behavior rules. The style
is closer to the structured programming style using condi-
tional branching and case-based branching, which is well
understood and less complicated than synchronous or asyn-
chronous communications. The logic of the behavior of
an agent can be understood without detailed knowledge of
other agents. This is enabled by the high level of abstrac-
tion of the scenario and caste language facilities.

5. Related work

Agent oriented programming languages and sys-
tems have been investigated for more than one decade
since the work presented in [9], including agent archi-
tectures and agent communication languages. There exist
researches to design the languages based on object-
oriented programming languages such as Java. The
representative one is JACK [2], which shares the com-
ponent based idea with SLABSp on the implementa-
tion of agent-oriented programming language. The JACK
Agent Language is a programming language that ex-
tends Java with agent-oriented concepts, such as Agents,
Capabilities, Events and Plans etc. SLABSp takes a dif-
ferent approach, the caste-centric approach, to the ex-
tensions of object-orientation to agent-orientation. The
changes are mostly at the meta-level, that is from ob-
jects to agents, from classes to castes, and from meth-
ods to scenario-based behavior rules. The principles of
SLABSp are to explore the language facilities for organiza-
tion of agents and capture of the behaviors of agents, which
can switch object-orientation to agent-orientation in a com-
patible way. As a result, the conceptual level of the lan-
guage design is more generic than that of the languages
based on BDI model [6]. However, the idea of BDI mod-
els can still be implemented in SLABSp.

There is the tool-based approach to providing a plat-
form including a software framework, a library of soft-
ware components and tools that facilitate the development
and deployment of agent based systems, such as JADE
[1], DIET [3] and ZEUS Toolkit [5]. SLABSp chooses a
language-based approach and can build the library of soft-
ware components in castes. For example, one may write
user-defined agent communication by using caste mecha-
nism in SLABSp. While in the tool-based approach, the ex-
tensions will be carried by adding specific library in the lan-
guages in which the platform is built. Therefore, SLABSp
may ease the incremental development of agent systems.

Proceedings of the 29th Annual International Computer Software and Applications Conference (COMPSAC’05)

0730-3157/05 $20.00 © 2005 IEEE

import java.util.*;

caste Backer {
action supportTommy(){

do {
System.out.println(#name()+" support Tommy");

}
}
action supportJerry(){

do {
System.out.println(#name()+" support Jerry");

}
}
// choose a random one to support
behavior turnRandom(){

Random rand = new Random();
do {

if (rand.nextBoolean())
@supportTommy();

else
@supportJerry();

}
} when { this: [@start()] }

}

// pity, support the weaker side
caste PityBacker join Backer{

// turn to Jerry if he's weaker
behavior turnToJerry() {

do { @supportJerry(); }
} when {

this: [@supportTommy()] and
(count Backer: [@supportTommy()]
> count Backer: [@supportJerry()])

}

// turn to Tommy if he's weaker
behavior turnToTommy() {

do { @supportTommy(); }
} when {

this: [@supportJerry()] and
(count Backer: [@supportJerry()]
> count Backer: [@supportTommy()])

}
}

// ritzy, support the stronger one
caste RitzyBacker join Backer{

// turn to Jerry if he's stronger
behavior turnToJerry() {

do { @supportJerry(); }
} when {

this: [@supportTommy()] and
(count Backer: [@supportTommy()]
< count Backer: [@supportJerry()]

}

// turn to Tommy if he's stronger
behavior turnToTommy() {

do { @supportTommy(); }
} when {

this: [@supportJerry()] and
(count Backer: [@supportJerry()]
< count Backer: [@supportTommy()])

}
}

(a) Backer.p (b) PityBacker.p (c) RitzyBacker.p

Figure 9. Vote backers example in SLABSp.

6. Conclusion and future work

In this paper, the programming language SLABSp is pre-
sented and implemented to demonstrate that caste and sce-
nario are feasible as the novel facilities in agent oriented
programming. The mechanism of castes is designed to orga-
nize the agents with the same pattern of states, actions, be-
haviors and environments. To our best knowledge, SLABSp
is the first one to provide castes and to support the dy-
namic binding between agents and castes in programming
languages. The mechanism of scenarios is designed to de-
scribe the agent’s behaviors under specific environment and
to support its perception to the environment. An obvious
advantage is that using scenarios can reduce many unneces-
sary direct communications among agents in programming
and achieve a powerful abstraction in programming.

We are currently working on the language support to the
running of SLABSp program on distributed systems. Fur-
ther linkage between the programming language and spec-
ification language SLABS and modelling language and en-
vironment CAMLE [7] is in progress to realize a relatively
complete framework of caste-centric agent-oriented soft-
ware development methodology.

References

[1] F. Bellifemmine, A. Poggi, G. Rimassa, and P. Turci. An
object-oriented framework to realize agent systems. In Pro-
ceedings of WOA 2000 Workshop, pages 52–57, 2000.

[2] M. Coburn. JACK Intelligent Agents: User Guide, version
2.0. http://www.agent-software.com, 2001.

[3] C. Hoile, F. Wang, E. Bonsma, and P. Marrow. Core specifi-
cation and experiments in DIET: A decentralised ecosystem-
inspired mobile agent system. In Proceedings of AAMAS’02,
pages 623–630, 2002.

[4] B. Moulin and M. Brassard. A scenario-based design method
and environment for developing multi-agent systems. In Pro-

ceeding of First Australian Workshop on DAI, volume 1087
of LNAI, pages 216–232, 1996.

[5] H. S. Nwana, D. T. Ndumu, and L. C. Lee. ZEUS: An ad-
vanced tool-kit for engineering distributed multi-agent sys-
tems. In Proceedings of PAAM’98, pages 377–391, 1998.

[6] A. S. Rao and M. P. Georgeff. BDI agents: From theory to
practice. In Proceeding of the 1st International Conference
on Multi-Agent Systems, pages 312–319, San Francisco, CA,
29–30 May 1995.

[7] L. Shan and H. Zhu. CAMLE: A caste-centric agent-oriented
modelling language and environment. In Software Engineer-
ing for Multi-Agent Systems III, volume 3390 of LNCS, pages
144–161. 2005.

[8] R. Shen, J. Wang, and H. Zhu. Scenario mechanism in agent-
oriented programming. In Proceedings of APSEC’04, pages
464–471, Busan, Korea, 2004.

[9] Y. Shoham. Agent-oriented programming. Artificial Intelli-
gence, 60(1):51–92, 1993.

[10] G. Weiss, editor. Multiagent Systems: A Modern Approach
to Distributed Artificial Intelligence. MIT Press, 1999.

[11] M. Wooldridge and N. Jennings. Intelligent agents: The-
ory and practice. The Knowledge Engineering Review,
10(2):115–152, 1995.

[12] H. Zhu. Scenario analysis in an automated requirements
analysis tool. Journal of Requirements Engineering, 5(1):2–
22, 2000.

[13] H. Zhu. The role of caste in formal specification of MAS. In
Proceeding of PRIMA’2001, volume 2132 of LNCS, pages
1–15, 2001.

[14] H. Zhu. SLABS: A formal specification language for agent-
based systems. International Journal of SEKE, 11(5):529–
558, 2001.

[15] H. Zhu. A formal specification language for agent-oriented
software engineering. In Proceedings of AAMAS’03, pages
1174–1175, Melbourne, Australia, 2003.

[16] H. Zhu and D. Lightfoot. Caste: A step beyond object orien-
tation. In Proceeding of JMLC’2003, volume 2789 of LNCS,
pages 59–62, 2003.

Proceedings of the 29th Annual International Computer Software and Applications Conference (COMPSAC’05)

0730-3157/05 $20.00 © 2005 IEEE

