
Caste-Centric Agent-Oriented Programming ∗

Ji Wang and Rui Shen
National Laboratory for

Parallel and Distributed Processing
Changsha, P. R. China

jiwang@mail.edu.cn, shenrui98@yahoo.com

Hong Zhu
Department of Computing
Oxford Brookes University

Oxford, OX33 1HX, United Kingdom
hzhu@brookes.ac.uk

Abstract

The paper presents a caste-centric approach to agent-
oriented programming by introducing SLABSp language.
The fundamental concepts of caste-centric methodology,
caste and scenario, as well as environment descriptions, are
available as language facilities in SLABSp in a coherent
way. In SLABSp programming, agents are organized into
castes to represent their structure and behavior characteris-
tics, and their behaviors are defined by scenarios and rules
in the context of their environment. The relations between
agents and castes are bound at runtime, and the perceptions
and interactions between agents are supported with scenar-
ios and behavior rules. Two selected SLABSp programs are
demonstrated to illustrate the programming style.

1. Introduction

Recently, many existing researches have been engaged
on agent-oriented software development methodologies to
address the problems in the analysis, specification and de-
sign of agent-based systems. However, the programming
supports to agent-oriented methodologies have not been ex-
plored as desired from the perspective of software engi-
neering. Currently, many agent-based systems are devel-
oped in programming languages of other paradigms, such
as in object-oriented, logic or functional programming lan-
guages. The high level concepts of the methodologies can
not be transformed to programs naturally and smoothly, and
therefore the main features of agents and multi-agent sys-
tems are not effectively or efficiently supported by such pro-
gramming languages to fully realize their advantages.

∗ Supported by the National Key Basic Research and Development Pro-
gram (973) of China under Grant No. 2005CB321802, the National
NSF of China under grant No. 60233020, the National High Technol-
ogy R&D 863 Programme of China under grant No. 2005AA113130,
and Program for New Century Excellent Talents in University.

The aim of the research reported in this paper is to in-
vestigate the new paradigm of programming, caste-centric
agent-oriented programming, by designing and imple-
menting new language facilities that directly support
caste-centric methodology for agent-oriented software de-
velopment [11, 12, 13, 15], where the concepts of caste
and scenario play the crucial roles. In this methodol-
ogy, agents are the active and persistent computational
entities that encapsulate data, operations and behavior pro-
tocols and are situated in their designated environments.
As the classifier of agents in the meta-model, a caste de-
fines a collection of agents that have the same behavior and
structural characteristics. Scenario is the facility that de-
scribes the situation of the agent’s environment so that
agent’s behaviors can be defined in the context of environ-
ment situations. The idea is to make the models and spec-
ification of agent-based systems be transformed to the
programs in a direct way.

To support the caste-centric methodology, the program-
ming language SLABSp is proposed, as a companion of
SLABS [12] and CAMLE [6], which are designed for mod-
ular and composable specification and modeling of multi-
agent systems. The key elements in the modeling and spec-
ification are directly available at the level of programming.
In [7, 9, 10], we examined the feasibility of caste and sce-
nario mechanisms in programming on a non-distributed
platform. Compared to these work, SLABSp is extended to
incorporate the declaration of the environment of agents ex-
plicitly, and a ‘where’ clause in behavior rules, which is in-
tended to specify the perception of the environment refer-
ence to the agents of different castes. In addition, the run-
time platform has been transferred to a distributed environ-
ment instead of a single JVM in the previous implemen-
tation. Two interesting examples, autonomous sorting and
vote backers, are used to illustrate the programming style
of SLABSp. One may notice that the programming style of
agent orientation in SLABSp has been significantly differ-
ent to the traditional object-orientation. The code of the ex-
amples is much clear and easier to understand and maintain

Proceedings of the Fifth International Conference on Quality Software (QSIC’05) 
1550-6002/05 $20.00 © 2005 IEEE 



than object-oriented code.
The remainder of the paper is organized as follows. Sec-

tion 2 presents the fundamental concepts of cast-centric
agent-oriented programming, with the focus on the novel
language facilities, caste, scenario and environment. Sec-
tion 3 describes the overview of SLABSp, including its lan-
guage constructs and agent structures. The examples are
demonstrated in section 4. Section 5 compares the related
work, and concludes the paper with discussions of the fu-
ture work.

2. Fundamental concepts

Caste, scenario and environment are the fundamental
concepts in caste-centric agent-oriented programming, and
have been supported as language facilities of SLABSp. De-
rived from the caste-centric meta-model of agent-oriented
systems [12], they can represent software systems which
can closely reflect the structures of the real world systems.

2.1. Caste

In caste-centric agent-oriented programming, a multi-
agent system is regarded as a set of the agents, which are de-
fined as encapsulations of states, actions and behavior rules.
Each agent has its own rules that govern its behaviors. In
the system, agents are organized into castes. Caste is the
classifier of agents and a modular programming unit that
defines templates of the structure and behavior characteris-
tics of agents. Just as classes in object-oriented methodol-
ogy to abstract a set of objects with the same pattern of data
and methods, castes are designed to abstract a set of agents
with the same characteristics of states, actions, behaviors
and environments. However, in contrast with that an object
is bound to its class statically and persistently, an agent is
desired to be bound to its castes dynamically, i.e. it may
join or quit a caste at runtime. In addition, a caste may ex-
tend the other castes. Caste A extends caste B means that all
agents in caste A have all structural, behavioral and environ-
mental features specified by caste B. The concept ‘caste’ has
been presented in [12] and has been examined in [11, 15] to
justify its feature as a step beyond object orientation.

Each agent can join multiple castes. When an agent joins
a caste, it will copy all elements of the caste, including its
states, actions, and behavior rules. Currently, when multiple
castes are joined, the name/behavior conflictions of these el-
ements should be avoided.

The notion of roles in the other agent-oriented method-
ologies can be described by castes directly. For instances,
agents that play the same role can be defined by a caste.
Caste is not only a well-define abstract notion, but also a
language facility available in programming.

2.2. Scenario

Scenario is used to describe agent behaviors in the con-
text of environment situations. Using scenarios, agents can
perceive other agents’ behaviors in its environment to de-
cide its action rather than driven by direct message commu-
nications.

In general, the notion of scenario as presented in [4, 12]
is a set of typical situations in the operation of a system
in the form of a sequence of activities. Its most fundamen-
tal characteristic is to put events in the context of the history
of behavior. In caste-centric agent-oriented programming, it
is extended to describe the situations in the executions of a
multi-agent system as combinations of the behaviors of re-
lated agents. The basic form of scenario description is a pat-
tern of an agent’s behavior, which is a sequence of observ-
able state changes and actions taken by the agent. One can
also describe the situations that a specific agent behaves in
a certain pattern, a number of or all agents of a caste behave
in a certain pattern, and logic combinations of such situa-
tions and relational expressions that contain such descrip-
tions. Once an observable action is taken, the pattern hence
the scenario will be evaluated, and together with the evalu-
ation of the pre-condition which is used to percept the envi-
ronment reference to several agents of difference castes, to
decide whether an action should be taken.

2.3. Environment

The environment of an agent is the set of agents in
the system that may affect its behaviors. Since the re-
lated agents may change during time, environment refer-
ences are used to follow these changes. The use of scenar-
ios in conjunction with agents’ visible actions and environ-
ment descriptions enables communications and collabora-
tions among agents to be described at a high level of ab-
straction and in the same style of conditional expressions in
structured programming, e.g. in the ‘where’ clause in behav-
ior rules, which is the pre-condition of the action to be taken
by the agent.

3. SLABSp overview

SLABSp is a programming language designed to sup-
port the caste-centric approach to agent-oriented program-
ming by extending the object-oriented programming lan-
guage Java.

Based on the work of [7, 9, 10], SLABSp has been ex-
tended to support explicit environment descriptions,
pre-condition in ‘where’ clause, and distribution of agents
among networked nodes. The SLABSp compiler trans-
lates its programs into Java, which can run within the
distributed multi-agent runtime environment.

Proceedings of the Fifth International Conference on Quality Software (QSIC’05) 
1550-6002/05 $20.00 © 2005 IEEE 



3.1. Language constructs

The main language constructs of SLABSp are shown in
Figure 1 in EBNF. As an extension to Java grammar, many
Java language constructs are involved, such as Java-Import,
Conditional-Expression, Statement and etc., with some al-
teration of identifiers to reference agent’s state and action
preceded by ‘#’ and ‘∼’ respectively, and the additional
‘join’ and ‘quit’ statements on the purpose of dynamic caste
joining and quitting.

Caste ::= { Java-Import }
‘caste’ Name [ ‘:’ { Name / ‘,’ }+ ] ‘{‘

{ Environment }
{ State | Action | Rule }

‘}’
Agent ::= { Java-Import } 

‘agent’ Name [ ‘:’ { Name / ‘,’ }+ ] ‘{‘
{ Environment }
{ State | Action | Rule }

‘}’
Environment ::= Name Id ‘;’

State ::= [ ‘internal’ ] Type ‘#’Id ‘(’ Formal-Parameters ‘)’ ‘{‘
{ Java-Definition }
‘get’ ‘:’ Statement
[ ‘set’ ‘:’ Statement ]

‘}’
Action ::= [ ‘internal’ ] ‘~’Id ‘(’ Formal-Parameters ‘)’ ‘{‘

{ Statement }
‘}’

Rule ::= ‘rule’ Id ‘(‘ Formal-Parameters ‘)’
[ ‘when’ ‘(’ Scenario ‘)’ ]
[ ‘where’ ‘(’ Conditional-Expression ‘)’ ]
‘do’ ‘{‘ { Statement } ‘}’

Scenario ::= ( Name | ‘self’ ) Pattern (a)
|   ‘<’ [Number] ‘:’ [Number] ‘>’ Name Pattern (b)
|   Count-Conditional-Expression (c)
|   Scenario ‘,’ Scenario (d)
|   Scenario ‘|’ Scenario (e)
|   ‘!’ Scenario (f)
|   ‘(’ Scenario ‘)’ (g)

Count-Expression ::= ‘*’ Name Pattern
Pattern ::= 

‘\’ { ( Action-Pattern | State-Assertion )  / ‘,’ } ‘\’
Action-Pattern ::= 

(‘~’ | ‘*’ | ‘~’Id ‘(’ Parameters ‘)’ ) [‘^’ Number]
State-Assertion ::= Conditional-Expression

Figure 1. EBNF syntax definitions.

Caste A caste in SLABSp is declared by using keyword
‘caste’, followed by its name, and (optional) names of its su-
per castes. The main body of a caste definition contains dec-
larations of the environment references, state elements, ac-
tion elements, and behavior rules.

Agent Similar to the declaration of a caste, an agent in
SLABSp is declared by using keyword ‘agent’, followed by
its name, and (optional) names of the castes it joins initially.
The main body of an agent definition contains declarations
of the environment references, state elements, action ele-
ments, and behavior rules.

Environment The environment of an agent/caste is de-
clared by an identifier and its type name, which can be ei-
ther the name of a caste or the name of an agent. The envi-

ronment reference can be accessed and modified in behav-
ior rules of the agent.

State To be distinguished from normal identifiers of Java,
identifiers of state elements are preceded by ‘#’. If the op-
tional keyword ‘internal’ is present, the state element can
only be accessed by the owner agent, otherwise it can be
observed by other agents. Each state has a result type and
several (or none) formal parameters, and together with the
Java-Definitions in the body of state declaration, it can ex-
press complex and multi-dimensional values, such as arrays
and matrices. The statements following keyword ‘get’ and
‘set’ leave the customizations of the read and write opera-
tions to programmers. If there is no ‘set’ statement present,
the state is declared readonly.

Action Identifiers of action elements are preceded by ‘∼’
for the same reason of explained above. If the optional key-
word ‘internal’ is present, the action element can only be
visible to the owner agent, otherwise it can be visible to
other agents. The formal parameters are used on the pur-
pose of parameterized action invocation, and when invoked,
the statements inside the body of the declaration will be ex-
ecuted.

Rule A behavior rule is declared by the keyword ‘rule’ with
an identifier to name it. Formal parameters of a rule ele-
ment declare variables that can be bound and accessed by
scenarios, expressions and statements within the rule. The
‘when’ keyword is followed by scenario declaration, and the
‘where’ keyword is followed by pre-condition. The state-
ments declared in the body of ‘do’ keyword will be exe-
cuted when the scenario happens and the pre-condition is
satisfied.

Scenario There are several different scenario definitions as
shown in Figure 1. An expression in the form of (a) de-
scribes the situation that a specific agent behaves in a cer-
tain pattern, where the agent is referred to by its name or
keyword ‘self’. Expressions in the form of (b) describe the
situation that the number of agents of a caste that behave in
a certain pattern is within a specified interval, where the in-
terval’s boundaries are optional. The default value of the left
boundary (i.e. the lower number) is ‘zero’. When the right
boundary is absent, it means ‘all’, i.e. the size of all the
caste. The Count-Conditional-Expression in the form of (c)
is an extension of Java Conditional-Expression with Count-
Expression to evaluate the number of agents in a caste that
behave in the pattern. Expressions in the form of (d), (e) and
(f) are the logic ‘and’, ‘or’ and ‘not’ combination of scenar-
ios in the above forms, respectively. Expressions in the form
of (g) are used to change the preference of the logic combi-
nations.

Proceedings of the Fifth International Conference on Quality Software (QSIC’05) 
1550-6002/05 $20.00 © 2005 IEEE 



Pattern A pattern is used to specify the sequence of ob-
servable states related conditional expressions (State-
Assertions) and observable actions’ invocations (Action-
Patterns). There are two special action pattern, ‘∼’ and ‘∗’,
which respectively stand for the silent action and the wild-
card matching all actions. When the action identifier is
provided, variables declared in the behavior rule’s for-
mal parameters can be bound when they are followed by the
’?’ mark, and then they can be accessed like normal vari-
ables. The continuous repeat of an action pattern can be
simply expressed by suffixing a ‘ˆ’ mark with the num-
ber of repeat times.

3.2. Agent structures

The structure of an agent is illustrated in Figure 2, which
contains the environment references, internal states and ac-
tions, observable states and actions, and behavior rules.

Context

Agent
<name>

preInvoke

postInvoke

readState
States

hookActionActions
unhookAction

Rules

message
Messages

Context

Agent
<name>

internal
states, actions

preInvoke

postInvoke

readStateStates

hookAction

unhookActionActions

Rules

message
Messages

Node
<host, port> console

lookup

Node
<host, port>

console

lookup

register

register

Remote Interface

Env

internal
states, actions

Env

*

*

Figure 2. Agent structures in the distributed
multi-agent runtime environment.

In SLABSp, the multi-agent runtime environment lever-
ages Java RMI to support distributed execution. The remote
interfaces shown in Figure 2 denotes the remote methods
for RMI purpose, which are used by the underlying object
model of the multi-agent system.

A node serves as the container of physically aggregated
agents, and provides remote methods such as lookup (to
lookup an agent’s remote handle by its name), register (to
register an agent or another node) and console (to adminis-
trate the node via a console client).

The remote methods of an agent are used to support the
scenario processing. Other agents’ behavior rules can use
method readState to read the values of observable states of
this agent, and register/unregister to watch observable ac-
tion invocations by hookAction/unhookAction. When an ob-
servable action is taken, preInvoke/postInvoke of registered

watchers will be called, hence related behavior rules will
be informed.

For each caste in SLABSp, there is a corresponding spe-
cial agent with several additional remote methods (getCaste,
agentJoined, and agentQuitted) and utility states (#population,
#populate, and etc.) to support caste joining/quitting and
scenarios involving castes. This special agent provides its
caste object via getCaste, and tracks the membership of its
agent by agentJoined and agentQuitted. The state #population

presents the total number of its agents, and state #populate

returns one of its agent randomly.

4. Programming in SLABSp

In this section, two examples are selected to illustrate the
programming style supported by SLABSp. They reflect the
features of programming for internet computing.

4.1. Autonomous sorting

The formal specification of autonomous sorting has been
investigated in [14]. The SLABSp program of this example
is shown in Figure 3.

caste Linker {
Linker higher;
Linker lower;

int #value() { int v; get: return v; set: v = value;}

rule IL(Linker A)
when ( Mediator\~introduce(self, ?A)\ )
where ( (A#value() < #value()) 

&& ( lower == null || lower#value() < A#value()) )
do { lower = A; }

rule IH(Linker A)
when ( Mediator\~introduce(self, ?A)\ )
where ( (A#value() > #value()) 

&& ( higher == null || higher#value() > A#value()) )
do { higher = A; }

}

agent Mediator {
~introduce(Linker A, Linker B){

System.out.println(“I introduce ” + A + “ to “ + B);
}

rule I() when ( self\~\ ) do {
Linker A = Linker#populate();
Linker B = Linker#populate();
~introduce(A, B);

}
}

Figure 3. Linker example.

Caste Linker has two environment references (higher and
lower) which are both of type Linker, a state #value wrapping
an integer value, and two behavior rules IL and IH. Since
#value is not defined as an internal state, it can be observed
by other agents.

Agent Mediator has an action ∼introduce which introduces
two agents of caste Linker, and a behavior rule I which ran-

Proceedings of the Fifth International Conference on Quality Software (QSIC’05) 
1550-6002/05 $20.00 © 2005 IEEE 



domly populate two agents from caste Linker and invoke ac-
tion ∼introduce with them periodically.

Behavior rule IL indicates that, when Mediator takes ac-
tion ∼introduce with the owner agent as the first parame-
ter, the variable A declared in its formal parameters will be
bound to the second parameter, and when the state #value

of A is lower than that of the owner agent, and if the envi-
ronment reference lower is null or the state #value of lower is
even lower than that of A, the environment reference lower

is set to A, i.e. it introduces an agent with a nearer lower
#value to the owner agent. Symmetrically, behavior rule IH

introduces an agent with a nearer higher #value.
After instantiating agent Mediator and numerous agents

of caste Linker with different #value, these agents will even-
tually form an ordered list linked by higher and lower.

This example shows that SLABSp’s programming style
enables natural description of agent’s perception of the en-
vironment and then taking appropriate actions rather than
driven by messages. What is more important, is that the de-
sired result of the program (say sorting) is achieved by the
emergent behavior of a set of agents which behave individu-
ally according to its designated environment with partial in-
formation. The feature is essential in programming for Web
applications.

4.2. Vote backers

With the enhancement of SLABSp, the vote backers ex-
ample mentioned in [9] can now be more efficiently pro-
grammed. As shown in Figure 4, the backers can support
one of the two candidates: Tommy and Jerry. Caste Backer

declares an action ∼support with a parameter specifying
whom to support. Caste TommyBacker groups the agents who
support Tommy, while caste JerryBacker groups those who
support Jerry. They both extend caste Backer and declare a
behavior rule support to periodically invoke action ∼support

with Tommy and Jerry as the parameter respectively.
Caste PityBacker extends caste Backer, and declares two

additional behavior rules (supportJerry and supportTommy).
Behavior rule supportJerry makes the agent quit caste Tom-

myBacker and join caste JerryBacker when Jerry’s backers is
less then Tommy’s, while behavior rule supportTommy makes
the agent quit caste JerryBacker and join caste TommyBacker

when Tommy’s backers is less then Jerry’s. Caste Ritzy-

Backer adopts a symmetrical strategy compared to caste Pity-

Backer.
When there are only agents of caste PityBacker in the sys-

tem, because they support the weaker candidate, the final
support ratio is fifty-fifty. But when there are only agents of
caste RitzyBacker, all the agents will support the lucky one at
last.

This example gives a sample of simulation of social ac-
tivity and further demonstrates how agents perceive the be-

caste Backer {
~support(String whom){

System.out.println("I support " + whom);
}

}

caste TommyBacker : Backer{
rule support() when ( self\~\ )
do { ~support("Tommy"); }

}
caste JerryBacker : Backer{

rule support() when ( self\~\ )
do { ~support("Jerry"); }

}

caste PityBacker : Backer{
rule supportJerry() 
when ( self\~support("Tommy")\

,*Backer\~support("Tommy")\ > *Backer\~support("Jerry")\)
do { quit TommyBacker; join JerryBacker; }

rule supportTommy() 
when ( self\~support("Jerry")\

,*Backer\~support("Jerry")\ > *Backer\~support("Tommy")\)
do { quit JerryBacker; join TommyBacker; }

}
caste RitzyBacker : Backer{

rule supportJerry() 
when ( self\~support("Tommy")\

,*Backer\~support("Tommy")\ < *Backer\~support("Jerry")\)
do { quit TommyBacker; join JerryBacker; }

rule supportTommy() 
when ( self\~support("Jerry")\

,*Backer\~support("Jerry")\ < *Backer\~support("Tommy")\)
do { quit JerryBacker; join TommyBacker; }

}

Figure 4. Backer example.

haviors of other agents to adjust their own actions accord-
ingly, and the ability to join and quit castes dynamically.
Such behaviors would be harder to implement in object-
oriented languages directly especially when agents can dy-
namically join and quit the system.

As shown in the above two examples, agents in a multi-
agent system need to communicate with others, thus co-
operation and coordination among agents are possible. In
SLABSp, agents can cooperate and coordinate by using
scenarios in behavior rules, which provide a communica-
tion mechanism at a higher level of abstraction and more
suitable for agent-oriented style of programming. However,
direct message-based communication between agents can
also be supported in SLABSp for the sake of expressive-
ness and flexibility.

5. Discussions

5.1. Related work

Agent-oriented programming languages and sys-
tems have been investigated for more than one decade since
AGENT-0 [8]. Many of them are from the perspective of ar-
tificial intelligence, typically based on BDI model with rea-
soning support, e.g. 3APL [2], AgentSpeak(L) [5], JACK
[1], JAM [3]. An agent in SLABSp achieves its goals by re-
acting to its environment via behavior rules. The concep-
tual level of the language design is different from that of

Proceedings of the Fifth International Conference on Quality Software (QSIC’05) 
1550-6002/05 $20.00 © 2005 IEEE 



the languages based on BDI model. It provides a new lan-
guage framework for programming multi-agent systems.
To our best knowledge, SLABSp is the first one to pro-
vide castes and to support the dynamic binding between
agents and castes in programming languages. The mecha-
nism of scenarios is designed to describe the agent’s behav-
iors under specific environment and to support its percep-
tion to the environment.

There are some researches of agent-oriented program-
ming from the perspective of software engineering, which
can be categorized into language based approach and tool
based approach. SLABSp takes the language based ap-
proach. One of the representatives of the programming
language approach is JACK, which shares the component
based idea with SLABSp on the implementation of agent-
oriented programming language. The JACK Agent Lan-
guage (JAL) is a programming language that extends Java
with agent-oriented concepts, such as Agents, Capabilities,
Events and Plans etc. SLABSp takes a different, the caste-
centric approach to agent-orientation. Firstly, JAL uses Java
interfaces to categorize agents, while SLABSp uses castes
as the classifier of agents. Since the interfaces can not be
changed during runtime, the agents is categorized statically,
thus the whole system need to be rebooted if there is any
change in the categorizing of agents. In SLABSp, agents
can join or quit castes dynamically, so that the online evo-
lution of the system can be exploited. Secondly, JAL uses
events to fire actions of related agents, while SLABSp use
scenarios in behavior rules to trigger actions of an agent.
Since an agent’s behavior depends on the events emitted by
other agents, its autonomy is restricted by other agents. In
SLABSp, an agent can decide what to do totally by its per-
ception of other agents with behavior rules, thus the cou-
pling of agents is much looser and the system can be more
easily maintained.

5.2. Conclusions and future work

The paper presents a programming language SLABSp
to support the caste-centric approach to agent-oriented pro-
gramming. The fundamental concepts of the methodology,
caste and scenario, as well as environment descriptions, are
available as language facilities in SLABSp in a coherent
way. In SLABSp programming, agents are organized into
castes to represent their structure and behavior characteris-
tics, and their behaviors are defined by scenarios and rules
in the context of their environment. The relations between
agents and castes are bound at runtime, and the percep-
tions and interactions between agents are supported with
scenarios and behavior rules. With scenarios and behavior
rules, a ‘guard’-alike description can be employed to en-
capsulate and reduce the complex direct communications
among agents. SLABSp has been implemented over a dis-

tributed platform with Java RMI. Autonomous sorting and
vote backers are used to illustrate the high level program-
ming abstraction supported.

Further investigations of the features and benefits of
caste-centric agent-oriented programming are in progress
to realize a complete framework for a new programming
paradigm.

References

[1] JACK Intelligent Agents: Agent Manual, version 5.0.
http://www.agent-software.com, 2005.

[2] K. Hindrikis, F. de Boer, W. van der Hoek, and J. J. Meyer.
Agent programming in 3APL. Autonomous Agents and
Multi-Agent Systems, 2(4):357–401, 1999.

[3] M. J. Huber. JAM: A BDI-theoretic mobile agent architec-
ture. In Proceedings of The Third International Conference
on Autonomous Agents, pages 236–243, 1999.

[4] B. Moulin and M. Brassard. A scenario-based design method
and environment for developing multi-agent systems. In Pro-
ceeding of First Australian Workshop on DAI, volume 1087
of LNAI, pages 216–232, 1996.

[5] A. Rao. AgentSpeak(L): BDI agent speak out in logical com-
putable language. In Proceedings of 7th European Workshop
on MAAMAW, pages 42–55, 1996.

[6] L. Shan and H. Zhu. CAMLE: A caste-centric agent-oriented
modelling language and environment. In Software Engineer-
ing for Multi-Agent Systems III, volume 3390 of LNCS, pages
144–161. 2005.

[7] R. Shen, J. Wang, and H. Zhu. Scenario mechanism in agent-
oriented programming. In Proceedings of APSEC’04, pages
464–471, Busan, Korea, 2004.

[8] Y. Shoham. Agent-oriented programming. Artificial Intelli-
gence, 60(1):51–92, 1993.

[9] J. Wang, R. Shen, and H. Zhu. Agent oriented programming
based on SLABS. In Proceedings of COMPSAC’05, Edin-
burgh, Scotland, July 25-28 2005.

[10] J. Wang, R. Shen, and H. Zhu. Towards an agent oriented
programming language with caste and scenario mechanisms.
In Proceedings of AAMAS’05, Utrecht, Netherland, July 25-
29 2005.

[11] H. Zhu. The role of caste in formal specification of MAS. In
Proceeding of PRIMA’2001, volume 2132 of LNCS, pages
1–15, 2001.

[12] H. Zhu. SLABS: A formal specification language for agent-
based systems. International Journal of SEKE, 11(5):529–
558, 2001.

[13] H. Zhu. A formal specification language for agent-oriented
software engineering. In Proceedings of AAMAS’03, pages
1174–1175, Melbourne, Australia, 2003.

[14] H. Zhu. Towards formal reasoning about emergent behaviors
in MAS. In Proceedings of SEKE’05, Taipei, Taiwan, July
14-16 2005.

[15] H. Zhu and D. Lightfoot. Caste: A step beyond object orien-
tation. In Proceeding of JMLC’2003, volume 2789 of LNCS,
pages 59–62, 2003.

Proceedings of the Fifth International Conference on Quality Software (QSIC’05) 
1550-6002/05 $20.00 © 2005 IEEE 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


