Chapter XLV
Caste-Centric Development
of Agent-Oriented
Information Systems

Lijun Shan
National University of Defense Technology, China

Rui Shen
National Laboratory for Parallel and Distributed Processing, China

Ji Wang
National Laboratory for Parallel and Distributed Processing, China

Hong Zhu
Oxford Brookes University, UK

ABSTRACT

Based on the meta-model of information systems presented in Zhu (2006), this chapter presents
a caste-centric agent-oriented methodology for evolutionary and collaborative development
of information systems. It consists of a process model called growth model, and a set of agent-
oriented languages and software tools that support various development activities in the
process. At the requirements analysis phase, a modelling language and environment called
CAMLE supports the analysis and design of information systems. The semi-formal models in
CAMLE can be automatically transformed into formal specifications in SLABS, which is a
formal specification language designed for formal engineering of multi-agent systems. At
implementation, agent-oriented information systems are implemented directly in an agent-
oriented programming language called SLABSp. The features of agent-oriented information
systems in general and our methodology in particular are illustrated by an example throughout
the chapter.

Copyright © 2007, ldea Group Inc., distributing in print or electronic forms without written permission of 1GI is prohibited.

Caste-Centric Development of Agent-Oriented Information Systems

INTRODUCTION

In Zhu (2006), we presented avision of future
information systemsthrough an agent-oriented
meta-model. The promising features of the
meta-model were illustrated in the context of
software devel opment onthelnternet/Web pl at-
forms and the utilisation of mobile computing
devices. In this chapter, we address the prob-
lem of how to develop such agent-oriented
information systems (AOISs). Based on the
meta-model introduced in Zhu (2006), we pro-
pose a methodology for developing an AOIS
which consists of a process model that guides
the development activities, along with a set of
languages and softwaretool sthat support vari-
ous development activitiesin the process.

The chapter is organised as follows. We
begin by describing aninformation system used
astherunning examplein the chapter. Wethen
propose an evolutionary development process
model for AOIS and outline the caste-centric
agent-oriented modelling language and envi-
ronment, CAMLE. The next section reviews
theformal specificationlanguageSLABS, which
stands for a Specification Language for agent-
based systems. The focus then turns to imple-
mentation issues, and the SL ABSp experimen-
tal programming languageisbriefly described.
We conclude the chapter with a discussion of
related work and further work.

DESCRIPTION OF THE
RUNNING EXAMPLE

Wewill useasimple, but non-trivial, informa-
tion system to illustrate our methodology as a
running example throughout the chapter. The
example was proposed and used as a case
study by FIPA’sAUML Technique Committee
(2004) to study agent-oriented modelling meth-
odsand notations. It wasinspired by the proce-
dure of the United Nations Security Council to

passaresolution. Thedescription of thesystem
follows.

TheUnited Nation Security Council (UNSC)
consistsof anumber of members, some perma-
nent and others elected from UN members.
Members become the chair of the Security
Council in turn monthly. To pass a UNSC
resol ution, thefollowing procedureisfollowed:

1. Atleast one member of UNSC submits a
proposal to the current chair.

2. The chair distributes the proposal to all
members of UNSC and sets a date for a
vote on the proposal.

3. Atagiven date that the chair sets, avote
from the members is made.

4. Each member of the Security Council can
vote either FOR or AGAINST or SUS
TAIN.

5. The proposa becomes a UNSC resolu-
tion, if the majority of the membersvoted
FOR and no permanent member voted
AGAINST.

6. The members vote one at atime.

7. Thechair calls membersin agiven order
tovote, andthechairisalwaysthelast one
to vote.

8. Thevoteisopen (in other words, when one
votes, al theother membersknow thevote).

9. The proposing member(s) can withdraw
the proposal before the vote starts, and in
that case no vote on the proposal will take
place.

10. All members vote on the same day, one
after another, so that the chair does not
change within the vote call; but it is pos-
sible for the chair to change from one
member to another between the time a
proposal is submitted until it goes into
vote. In this case the earlier chair must
forward the proposal to the new one.

11. Avoteisalwaysfinishedinoneday and no
chair change happens on that day. The
date of the voteis set by the chair.

Caste-Centric Development of Agent-Oriented Information Systems

Figure 1. Growth model of software
devel opment

Seed | Inception |

period

| Development a seed system |

A Operation of system
. + - Suspend
| Identify new requirements | requirements

]
Ko the Not worth
Growth requirements realizing
period important &
easible? Important
but not
Y &;l feasible

Develop new components to
satisfy new requirements

Integrat new components &
remove old components

Decline Current system declines /
new system’s concept forms (-

period
h 4

Inthe remainder of the chapter, we will use
the above astheinitial requirements specifica-
tion to demonstrate how agent-oriented infor-
mation systems are analysed, modelled, de-
signed, and implemented in our methodol ogy.

DEVELOPMENT PROCESS

As discussed in Zhu (2006), one of the most
attractive potential features of agent-oriented
information systemsisitsstrong support of the
evolution of information systemsand their col -
laborative developments. To realise this, we
proposed a lifecycle model of software sys-
tems as shown in Figure 1 (Zhu, Greenwood,
Huo, & Zhang, 2000; Zhu, 2002, 2004).
Thelifecycle model is called growth model
becauseit viewsinformation systems' lifecycle
asaprocessof growth. Fromthispoint of view,
a software system’s lifecycle can be divided
into three periods: the seed period, the growth
period, and the decline period. When an infor-

mation system isinitially constructed and put
intooperation, itisrelatively weak and small in
terms of the servicesit provides, the volume of
information it contains, and other non-func-
tional attributes such as performance, security,
and so forth. During the operation, the system
growsinmany directionsand dimensions. New
components may be integrated into the system
to provide new services, while current compo-
nentsmay be modified toimprovethe systems’
functional or non-functional properties as us-
ers’ new requirementsareidentified and imple-
mented. The system gradually goes to the de-
cline period, and dies when it cannot sustain
more modification to meet new requirements.
It is worth noting that different types of soft-
ware systems may be suitable to different
lifecyclestrategies. For example, softwaresys-
tems of Lenman’s S-type (1990, 2001) are
more suitable to having a strong seed system
and little modifications during the rest of its
lifecycle, because such systems’ requirements
are well understood and well specified. The
modifications are mostly corrections of errors
in the software systems. However, Zhu (2004)
argued that most information systems are
Lenman’ s E-type systemswhose requirements
are changing, and hence they are evolutionary
by nature. They are best devel oped following a
growth strategy withtheemphasisonthegrowth
period. Incomparisonwith other strategiesthat
guide information system development, the
growth strategy has a number of advantages.
Thefirstisthelower risk, becauseonly the best
understood requirements are i mplemented and
integrated into the system. The investment in
each step of the growth is smaller than imple-
menting ahuge systemin onebig bang. Second,
it is more likely to have a shorter time delay
from the recognition of a well-understood re-
quirement to the delivery of the functionality.
Complicatedinteractionsbetweenrequirements
can also be reduced and abated. Third, the
developers can learn from previous develop-

Caste-Centric Development of Agent-Oriented Information Systems

ment experiences and improve their perfor-
mance in the follow-up development of new
components. They can gain confidence during
the development process and see their results
earlier than other development strategies. Fi-
nally, and most importantly, users’ feedback
can be obtained much earlier than other strat-
egies, as each step of the growth process takes
amuch shorter period of time. Thisenablesthe
users to clarify their requirements easily and
guidethedirectionthat the systemdevelops. In
fact, this strategy differs from the so-called
staged development process model in its em-
phasis on taking users’ feedback to guide the
direction of software evolution.

To support the growth strategy, we de-
signed and implemented a set of languages and
toolsfor modelling, specification, and program-
ming agent-orientedinformation systems. These
languagesand tool ssupport variousactivitiesin
the development process.

The modelling language and environment
CAMLE supports:

. requirements elicitation and analysis by
representing the current information sys-
tem and the required system in agent-
oriented models; and

. feasibility study of the requirements by
analysingtherequired modificationstothe
existing system.

The formal specification language SLABS
and itsformal reasoning logic Scenario Calcu-
lussupport:

. formal description of the requirements of
the system under development so that
new functionalities and services can be
implemented as new components in the
form of castes/agents; and

. formal reasoning of the design of the
system/new components to ensure that
thesystemwill meet therequirementsand

that the new components can be inte-
grated into the systems as expected.

The agent-oriented programming language
SLABSp and its runtime support environment
are used for:

. theimplementation of the system/compo-
nents according to the semi-formal speci-
fication in the CAMLE model and/or the
formal specificationin SLABS; and

. the testing of new components and the
integration into the existing system.

In the following sections, we will describe
each of theselanguagesandtools, andillustrate
their uses with the running example described
earlier in the chapter.

MODELLING AND ANALYSIS

Modelling plays a crucial role in the develop-
ment of the seed system anditsevolution asthe
maintool of requirementsanalysisand system/
component design. This section presents the
modelling process, and the diagrammatic mod-
elling language and environment of CAMLE
(Shan & Zhu, 2003, 20043, 2004b, 2005; Zhu &
Shan, 2005).

Process of Modelling

Inour methodology, modelling aimsat represent-
ing the users’ requirements with a set of agents
at variousgranul aritiesand organizing theagents
intoaninformation system. Thekey activitiesin
the modelling and analysis phaseinclude:

. Identify the agents and castes of agentsin
the system as well as the relationships
between them, such as the is-a relation
(inheritance), membership-shift relation
(migration or participation), and whole-

Caste-Centric Development of Agent-Oriented Information Systems

part relation (aggregation, congregation,
or composition). Theartefact producedin
this activity is a caste model for the sys-
tem from the perspective of system archi-
tecture.

. Identify theagents' interaction patternsin
various scenarios, and produce a set of
collaboration modelsfor the system from
the perspective of dynamic behaviour. In
order to specify the system in sufficient
detail, an agent may bedecomposedintoa
number of components, which are also
agents. Then the interaction modelling
proceeds to capture the interactions be-
tween the components. Eventually, the
collaboration model isrefined into ahier-
archy, where collaboration model sat vari-
ous granularities specify the interactions
between component agents at various
abstraction levels. Along with agent de-
composition, the caste model is enriched
with further detailsto present the caste of
agents at various granularities and the
structural dependencies between them.

. For each caste, elaborate and specify how
its agents perform actions and/or change
statesin typical scenarios so that a set of
behaviour rules can be assigned to the
caste. The artefact produced in thisactiv-
ity is a set of behaviour models, each
associated to a caste in the system.

The result of the modelling is a system
model comprising aset of diagramsthat repre-

sent the system from various views and at
different levels of abstraction. For example, in
the UNSC system, a caste diagram is con-
structed to capture the organization structure,
which comprises one chair and a number of
UNSC members—either permanent member
or elected member. Collaboration diagrams
describethetypical scenariosof theinteraction
between UNSC members and the chair.
Behaviour diagrams respectively for UNSC
member and chair definetheir specificbehaviour
rules. Moredetail saregiveninthenext subsec-
tion.

During the growth phase of an existing
agent-oriented information system, new com-
ponentsfor providing new functions, services,
and features are devel oped inthe context of the
existing system, which will be the operating
environment of the new components. There-
fore, the model of the existing system is the
basisfor the representation of the new require-
ments and the analysis of their feasibility. For
example, if the organization of the United Na-
tions Security Council isto bereformed to add
anew type of member whose power on resolu-
tionisbetween elected member and permanent
member, the UNSC information system can be
modified accordingly by adding a new caste
representing the new type of members.

The Modelling Language

CAMLE employsthe multiple views principle
to model complicated systems. There arethree

Figure 2. Caste diagram: Notation and the UNSC example

Caste || Caste node

—> Inherit
=== Migrate

® --->> Paticipate
& Aggregate
& Congregate
— & Composite

0

UNSC-member [F-7" "7 In
=

” Permanent b H ”Elhmhd b ”

Caste-Centric Development of Agent-Oriented Information Systems

Figure 3. Notation of collaboration diagra

AgentName:Caste ‘ Caste node:
‘ Communication Link: ‘ N1 Actions)-

“ CasteName

types of models in CAMLE: caste models,
collaboration models, and behaviour models.
Each model may consist of one or more dia-
grams.

A caste model usually consists of one caste
diagram. Figure 2 shows the notation of caste
diagrams and an example caste diagram of
UNSC system. A caste diagram comprises a
set of caste nodesrepresenting varioustypes of
agents in the system, and a set of links repre-
senting variousrel ationshi psbetween agents of
the castes.

In the UNSC caste diagram, caste UNSC
representsthe organization, whichiscomposed
of a number of members represented by caste
UNSC-member. The aggregate link between
the UNSC-member and the UNSC denotes the
part-whole relationship between the members

and the organization. The rule that members
take the role of Chair in rota is described by
participate and migrate relation between caste
UNSC-member and caste Chair. Two types of
members are represented by two sub-castes of
UNSC-member, Permanent-member and
Elected-member, respectively.

The collaboration models capture agents’
interaction patterns that represent dynamic
behaviours of the system. The notation of col-
laboration diagrams is shown in Figure 3. A
collaboration model may consist of a set of
scenario-specific collaboration diagrams that
represent the interactions between agents in
specific scenarios, and ageneral collaboration
diagram that summarises the communications
between agents.

For exampl e, Figure 4 depictsthecollabora-
tion model of UNSC. Figures 4a and 4b de-
scribe the interactions between agents in the
scenarios of voting on a proposal and with-
drawal of aproposal, respectively. Thegeneral
collaboration diagram, such as Figure 4c, de-
scribes all possible communications between
all agents that may occur during the system’s
execution.

Figure 4. Collaboration model of UNSC information system

UNSC-member

1.Submit{p:Proposal)
4¥ote[p:Propusal, v:{FOR, AGAINST, ABSTAIN}]

2.Distribute(p:Proposal, vote-date:Date)
3.CallVote[m:UNSC-member, p:Proposal)
5.Resolution(p:Proposal)

President:Chair

Proposer:UNSC-member
1

1.Submit{p:Proposal)
3.Reqwithdraw(p;Proposal)

2.Distribute(p:Proposal, vote-date:Date]
4.Withdraw(p:Proposal]

President:Chair UNSC-member

(0)

UNSC-member

Submit(p:Proposal)
ReqWithdraw(p:Proposal)

Vote[p:Proposal, v:{FOR, AGAINST, ABSTAIN})

Distri Proposal, vote-date:Date]
Withdraw{p:Proposal)
CallVote[m:UNSC-member, p:Proposal]
Resolution(p:Proposal)

President:Chair

Caste-Centric Development of Agent-Oriented Information Systems

Figure 5. Notation of behaviour diagram

R-Exp

{_t: Act(py,...pr)

e C-Exp
ILt_ State assertion node
. Temporal order Link

_s Logic link

Action node

a. Scenario-specificdiagram: Voting
b. Scenario-specific diagram: Withdraw
c. General collaborationdiagram

Notethat when an agent isdecomposed into
components, theinteractionsbetweenthe com-
ponent agents also need to be specified. This
results in a hierarchy of collaboration models
defining the dynamic behaviours of agents at
various granularities. Readers are referred to
Shan and Zhu (2004b) for details about the
process of collaboration modelling, the hierar-
chical structureof collaborationmodels, aswell
as examples.

While caste and collaboration models de-
scribe multi-agent systems at the macro-level
from the perspective of an external observer,
behaviour modelling adoptstheinternal or first-
person view of each agent. It describes an
agent’s behaviour in terms of how it acts in
certain scenarios of the environment at the
micro-level. The notation of behaviour dia-
grams is shown in Figure 5. Readers are re-
ferred to Shan and Zhu (2003) for detailed
explanation of the notation.

Each caste is associated with a behaviour
diagram that describes the behaviour rules of
itsagents. Inthe UNSC example, there aretwo
behaviour diagrams: one for caste Chair and
the other for caste UNSC-member. Figure 6
depicts the behaviour diagram for caste Chair.

Scenario node

|T3re_coﬁdmoﬁi Precondition node

—— —— —

— []

[, Resulting arrow

@ O Logic connective nodes

The behaviour of a Chair agent is defined by
four behaviour rules describing its actions un-
der variouscircumstances, namely todistribute
a proposal when some member submits the
proposal, to withdraw the proposal when re-
quested by the proposing member(s), to call all
the membersto vote on a proposal, and to quit
from Chair when its turn finishes.

The castes Permanent-member and El ected-
member inherit the behaviour rules of UNSC-
member. They have no additional behaviour
rules, thus require no different behaviour dia-
gram than that of the UNSC-member.

The Modelling Environment

A software environment to support the process
of analysisand modellingin CAMLE hasbeen
designed and implemented. It integrates the
following set of tools:

. Model Construction and Management
Tools: A set of interactive diagram edi-
tors with graphic user interface are pro-
vided to enable the creation, editing, and
modification of various diagrams in
CAMLE models. These diagrams are or-
ganized and managed into development
projects. Reuse of models from other
projects is enabled. Figure 7 shows a
screen snapshot of the CAMLE
environment’s interface.

Caste-Centric Development of Agent-Oriented Information Systems

Figure 6. Behaviour diagram of the chair in UNSC information system

Distribute[p:Proposal, vote-date:Date]

i vote-date

¢ memberist=all members |

b

CallVote[m:UNSC-member,
p:Proposal)

. Consistency Checkers: A set of con-
sistency constraints is defined on the
CAMLE language to ensure that a set of
diagrams form a meaningful model of an
information system. The consistency of a
model is checked by a set of tools to
identify any violence of the constraints.
Detailsof the consistency constraintsand
theimplementation of the checkerscan be
found in Shan and Zhu (2004a).

Figure 7. CAMLE’s graphical user interface
for model construction

- Solar - [Behavior: UNSC-member] e =] 3]

[Jele Edt vew Iook Window telp =l2lx|
DSHIXx =R 8 7]
ey ——) =

W ode! o

[Ccaste
=+ Collaboratic| | ©
I

|| Distribute(p:Proposal,
vote-dateiDate)

| ’_Vule is appropriate |
| \ to the proposal |
‘ CallVote[m:UNSC.
‘ member, p:Proposal)
L Wy

Vote([p:Propasal,

v:{FOR, AGAINST, ABSTAIN})

)
——————
First day of month M, |
/7| Month_Chair(M] = self |
g
i} 4] »
Ready [[raom /A

Distribute(p:Proposal,
{ vote-date:Date]
—————— -
*\\ last day of the month
— —

Withdraw(p:Proposal)

|
!

auit

. Specification Generator: It transforms
awell-defined model into aformal speci-
fication in SLABS. Details of the trans-
formation algorithms can befoundin Zhu
and Shan (2005).

Figure 8 showsthe architecture of the mod-
elling environment. Readers are referred to
Zhuand Shan (2005) for detailed description of
thearchitectureandfunctionality of the CAMLE
environment.

SPECIFICATION

One of the most appealing features of agent
technology is its natural way to modularise
complex systemsin terms of multipleinteract-
ing autonomous components. This feature is
supported by the language facility caste in
SLABSfor modular and composabl e specifica-
tion of multi-agent systems. It bridges the gap
between graphic modelling andimplementation
in the AOIS development process. The output
of the modelling phase—a system model in
CAMLE—isfurther analysed at the specifica-

Caste-Centric Development of Agent-Oriented Information Systems

Figure 8. The architecture of CAMLE environment

Usars Consistency Formal
Requirements Check Report Specifications

Partid
Diagram
Generator,

e e e =

Behaviour,

|

|

|

I Collaboration

I Checker /
|

| Caste/ Collaboration
|

|

|

|

|

|

Collaboration odel Checkey

|

Specification
Generator

—_———————

Behaviour
Model
hecker

Caste
Behaviour

Graphic

Models

tion phase, which involves the following two
mainactivities:

Generation of Formal Specifications:
As for all software developments, it is
necessary to analyse the design of an
agent-based system before the devel op-
ers are committed to costly implementa-
tion. Itisparticularly true during the evo-
lution of asystem when new components
are to be integrated into the existing sys-
tem. Formal analysis of the new compo-
nentsin the context of the systemisthere-
forehighly desirable. However, themanual
productionof formal specificationsof multi-
agent systemsislabour intensive, costly,
time consuming, and error prone. Withthe
help of the CAMLE modelling environ-
ment, formal specificationsin SLABScan
be automatically generated from graphic
modelsin CAMLE.

Formal Analysisof the System: Formal
analysiscan be applied on formal specifi-
cationsin SLABSto prove the properties

of the specified system. We have been
devising aformal system Scenario Calcu-
lus to reason about the behaviours of
multi-agent systems, especially their most
complicated behaviourssuch asemergent
behaviours(Zhu, 2005). If theformal rea-
soning about the system/new components
based on the formal specification reveals
that the system model isunsatisfactory on
certain properties, the flow of the process
goesback tothemodelling phasetorectify
the design. Thus, the process iterates the
modelling and specification stages until a
satisfactory model/specification is
achieved.

The formal definition of the SLABS lan-
guage and its meta-model can be found in Zhu
(2001, 2003). A formal logic for reasoning
about MASs' behavioursbased on SLABS can
be found in Zhu (2005).

Figure 9 shows an example of caste speci-
fication. It is the UNSC-member caste gener-
ated by the CAMLE environment’s specifica-

Caste-Centric Development of Agent-Oriented Information Systems

Figure 9. Specification of UNSC-member caste in SLABS

 UNSC

Action Submit(p:Proposal); ReqWithdraw(p:Proposal); Yote[p:Proposal, vi{FOR, AGAINST, ABSTAIN})

member. p:Proposal)]:

[5] |-> JOIN[Chair);

[Submit{p:Proposal]] |-> Req¥ithdraw{p:Proposal):
| | WHERE the proposal not wanted
President:Ch
residentthail | 1ol | Vote[p:Proposal, v:{FOR, AGAINST, ABSTAIN});
IF President:Chair. [Distribute[p:Proposal, vote-date:Date]. Call¥ote[m:UNSC-

WHERE wvote is appropriate to the proposal

WHERE First day of month M, Month_Chair[M] = self

tion generator from the CAMLE model of the
UNSC system.

IMPLEMENTATION

A distinctive feature of our agent-oriented de-
vel opment methodol ogy of information systems
isthat we aim at the direct implementation of
information systems with a novel agent-ori-
ented programming language that is based on
the meta-model of the agent-oriented informa-
tion system described in Zhu (2006). Such a
programming language can significantly nar-
row the gap between specification and imple-
mentation. This section presents our research
on the design and implementation of the agent-
oriented programming language SLABSp and
illustratesthe styleof programming throughthe
running example.

SLABSp is designed to support the caste-
centric approach to agent-oriented software
development methodology by extending the
object-oriented programming language Java
(Shen, Wang, & Zhu, 2004; Wang, Shen, &
Zhu, 20053, 2005b, 2005c). AsshowninFigure
10, it extends Javawith three key concepts and
language facilities: caste, scenario, and envi-
ronment descriptions.

Theselanguagefacilities become the domi-
nant languagefacilitiesintheimplementations
of an AOIS and significantly change the styles

10

of programming. In particular, caste becomes
the basic program unit from which a compli-
cated software system is built. Although class
in object-orientation can still be used in the
programming, it is now mainly used to define
encapsul ated datatypesthat agents manipul ate
and use to represent agent states. Other Java
constructs, such asImport statements, Expres-
sions, Statements, and so on, are still legal
language facilities, but they are extended to
include identifiers to refer to agent states and
actions, which are represented by preceding
‘# and ‘~’, respectively. There are also the
additional join and quit statements to enable
agents to dynamically join into and quit from
castes.

Another significant change of programming
style is the result of the introduction of the
scenario descriptionlanguagefacility. Thesyn-
tax of scenariodescriptionisgiveninFigure 10,
where an expression in the form of (a) de-
scribes the situation that a specific agent be-
haves in a certain pattern, where the agent is
referred to by its name or keyword self. Ex-
pressionsin the form of (b) describe the situa-
tion that the number of agents of a caste that
behavein acertain patterniswithin aspecified
interval, where the interval’s boundaries are
optional. Thedefault value of theleft boundary
(i.e., the lower number) is ‘zero’. When the
right boundary isabsent, it means‘ all’—thatiis,
the size of all the caste. The count-condi-

Caste-Centric Development of Agent-Oriented Information Systems

Figure 10. Syntax of SLABSp in EBNF

Caste ::= { Java-Import }
‘caste’ Name [‘' { Name /*,’ }+'{*
{ Environment }
{ State | Action | Rule }

'}
Agent ::= { Java-Import }
‘agent’ Name [‘" { Name /*,’
{ Environment }
{ State | Action | Rule }

1Y

Environment ::= Name 1d ;"

State ::= [‘internal’] Type ‘#'Id ‘(' Formal-Parameters ‘)" ‘{*
{ Java-Definition }
‘get’ “:’ Statement
[‘set’‘:’ Statement]

Action ::= [‘internal’] ‘~Id (" Formal-Parameters ‘)’ *{*
{ Statement }

Rule ::="rule’ Id ‘(* Formal-Parameters ‘)"
[‘when’ (" Scenario ‘)’]
[‘where’ ‘(" Conditional-Expression ‘)"]
‘do’ \{* { Statement } '}’

Scenario ::= (Name | ‘self’) Pattern (a)
| ‘<’ [Number] *:" [Number] ‘>’ Name Pattern (b)
| Count-Conditional-Expression (c)
| Scenario®,” Scenario (d)
| Scenario ‘|" Scenario (e)
| V" Scenario (f)
| (" Scenario ‘)" (g)

Pattern ::=

*\" { (Action-Pattern | State-Assertion) /',” }'\"
Action-Pattern ::=

(*~' | %" | *~'Id (" Parameters *)’) [*~' Number]
State-Assertion ::= Conditional-Expression

tional-expression in the form of (c) is an
extension of Java conditional-expression with
count-expression. The result of evaluating a

count-expression is the number of agentsin a
castethat behaveinthe pattern. Expressionsin
the form of (d), (e), and (f) arethelogic ‘and’,

or’, and ‘not’ combination of scenariosin the
above forms, respectively. Expressions in the
form of (g) are used to change the preference
of thelogic combinations. The usesof scenario
descriptionsinconjunctionwith agents' visible
actions and environment descriptions enable
communication and collaboration among agents
tobedescribed at ahighlevel of abstractionand
in the same style of conditional expressionsin
structured programming.

For example, the UNSC system can be
implementedin SLABSpasshowninFigure13.
Based on the specification of the UNSC sys-
tem, caste Member has three behaviour rules.
Rule Withdraw will enablethe agent to request
the proposal to be withdrawn when the agent
regards the proposal as inappropriate. Rule
Votewill guidetheagent tovote onthe proposal
with aspecific attitude when the chair callsthe

Figure 11. Fragments of UNSC system in SLABSp

import java.util.Calendar;
caste Member {
~Submit(Proposal proposal){
/s
¥
~ReqWithdraw(Proposal proposal){
Vs
¥

~Vote(Proposal proposal, Attitude attitude){
Vs

¥

rule Withdraw(Proposal proposal)
when (self\~Submit(?proposal)\)
where (proposal.isinappropriate())
do

~ReqWithdraw(proposal);

rule Vote(Proposal proposal)
when (Chair\~CallVote(self, ?proposal)\)
do {
// think about the proposal
Attitude attitude = Attitude.FOR ; // or AGAINST, or ABSTAIN
~Vote(proposal, attitude);

rule AlternateJoin()
when (self\~\)
where (// the first day of a month
ChairofMonth(self, Calendar.getInstance().get(Calendar.MONTH))
&& (Calendar.getInstance().get(Calendar.DAY_OF_MONTH) =
Calendar getInstance().getActualMinimum(Calendar.DAY_OF. MONTH)))
o {

join Chair;
>
// the caste for permanent members
caste PermanentMember : Member {

//
b

import java.util.Date;
import java.util.Calendar;

caste Chair : Member {

;Distribute(Pmposal proposal, Date date){ // ...
;Withdraw(ProposaI proposal){ // ...
~Callvote(Member member, Proposal proposal){ // ...
;Resolution(Proposal proposal){ // ...

rule Distribute(Proposal proposal)
when (self\~\, <1:1>Member\~Submit(?proposal)\)
do { // schedual voting a week later
Date date = Calendar.getInstance()
.add(Calendar.DAY_OF_MONTH, 7).getTime();
~Distribute(proposal, date);

rule CallVote(Proposal proposal, Date date)
when (self\~Distribute(?proposal, ?date)\)
where (Calendar.getInstance().getTime().equals(date))
do { // call all members (except the Chair) to vote, the call the Chair
Collection members = Member#agents();
members.remove(self);
for(Member member: members)
~CallVote(member, proposal);
~CallVote(self, proposal);
>

rule AlternateQuit()
when (self\~\)
where (// the last day of a month
Calendar.getInstance().get(Calendar.DAY_OF_MONTH) ==
Calendar.getInstance().getActualMaximum(Calendar.DAY_OF_MONTH))
do { quit Chair; }

rule Resolution(Proposal proposal)

when (<:>Member\~Vote(?proposal, *)\, // all members have voted
*Member\~Vote(proposal, FOR)\ > Member#population() / 2,
1<1:>PermenantMember\~Vote(proposal, AGAINST)\)

do { ~Resolution(proposal); }

11

Caste-Centric Development of Agent-Oriented Information Systems

agent to vote. Rule AlternateJoin will trigger
the agent to join caste Chair when it isitsturn.
Caste Chair extends caste Member with four
additional rules. Rule Distributewill guidethe
Chair agent to distributethe proposal and sched-
ule avoting date for each submitted proposal.
RuleCallVotewill direct the Chair agent to call
the members to vote on the proposal on the
voting date. Rule AlternateQuit will ask the
current chair to quit from caste Chair when its
turnfinishes. RuleResolutionwill definehow a
decision should be made based on the mem-
bers’ votes.

A runtime environment for the execution of
multi-agent systems has been implemented as
an extension of Java runtime environment. In
particular, an automaton called the pattern pro-
cess machine is designed and implemented to
process patterns and scenarios. A compiler has
been devel opedtotranslate SLABSp programs
into Javaandto executeintheruntimeenviron-
ment. More details can be found Shen et al.
(2004) and Wang et al. (2005a, 2005b, 2005c¢).

Thedesign andimplementation of SLABSp
demonstrate that caste and scenario are fea-
sible as programming language facilities. Our
experiencesand experimentswith thelanguage
clearly show that they provide power abstrac-
tions for AO programming. In particular, the
caste facility enables the modularity in the
concept of agentsto berealized directly andin
full strength. An obvious advantage of using
scenariosto define agents' behavioursisthat it
can significantly reduce the unnecessary, ex-
plicit, message-based communications among
agents. Thisalso enablesAO programming at a
very high level of abstraction.

CONCLUSION

We now conclude the chapter with a summary
of our main ideas and research results, and a
comparison of our work with related works.

12

Summary

Our caste-centric methodology of agent-ori-
ented information systems is based on awell-
defined meta-model presentedin Zhu (2006). It
consists of a process model called the growth
model, a set of languages including a model-
ling language CAMLE for the requirements
analysis and design, a formal specification
language SLABS and a programming lan-
guage SLABSp, and a set of support tools
including CAMLE’ s modelling environment, a
formal reasoning system Scenario Calculus,
and a runtime support environment of agent-
oriented programs. A number of case studies
onmodelling, formal specificationand verifica-
tion, and programming have been conducted to
develop the heuristics of using the languages
and tools. Our methodology has the following
features.

The methodology aims at modern informa-
tion systems, especially those running on the
Internet and the Web platforms. As argued in
Zhu (2004), such systems belong to Lenman’s
E-type and are by nature evolutionary. The
agent-oriented approachisvery suitablefor the
devel opment of such systemsaswehave shown
in Zhu (2006). Moreover, the growth process
model explicitly reflectstheevolutionary char-
acteristics of such systems and encourages the
growth strategy, that is, the sustainable long-
term evolution strategy of their lifecycle. This
strategy is also strongly supported by the lan-
guages and tools.

The set of languages designed for use at
different phasesin the development and evol u-
tion of AOISs are based on a well-defined
meta-model. The gaps between requirements
specification, system and component design,
andimplementationaremuch smaller thantheir
counterparts in other existing paradigms and
approaches. In particular, the key concepts of
agents and castes can be directly implemented
in the agent-oriented programming language.

Caste-Centric Development of Agent-Oriented Information Systems

Our methodology is an extension of the
current mainstream paradigm (the object-ori-
entation) of information system development.
In our model, object is a special degenerate
form of agent. Agent-orientation provides a
better metaphor for modelling the information
systems in the real world than object-orienta-
tion. It can directly represent active and au-
tonomouselementsininformation systemssuch
ashumans, independent i nformation processing
components such as Web services, and so on.
It enables the design and implementation of
computerised information systems in a struc-
turethat is closer to the structure of the system
in thereal world than object-orientation.

Finally, our approach to agent-orientation is
caste-centric. In other words, caste plays the
central rolein our methodology. Itisnot just an
abstract concept, but al so alanguagefacility that
can be directly implemented in a programming
language. It is the basic form of program unit
fromwhich complicated systemsareconstructed.
It realisesthe kind of modularity inherent in the
concept of agents. Our case studies show that
caste can be used in a nice and straightforward
way to model and implement various useful
notions devel oped in agent technol ogy, such as
roles, agent society, collaboration protocol s, nor-
mative behaviours, and so forth.

Related Work

Since Jennings (1999) advocated the notion of
agent-oriented software engineering as a para-
digmfor building complex systems, anumber of
methodol ogies for agent-oriented software de-
velopment have been proposed, such as MaSE
(Wood & Del oach, 2000), Gaia (Wooldridge,
Jennings, & Kinny, 2000; Zambonelli, Jennings,
& Wooldridge, 2003), Tropos(Bresciani, Perini,
Giorgini, Giunchiglia, & Mylopoul os, 2004), and
PASSI (Burrafato & Cossentino, 2002). A
survey and analysis of the current state of the
art in the research on agent-oriented software

engineering can be found in Zambonilli and
Omicini (2004).

Asinearly work on M A S engineering meth-
odology, MaSE provides a development pro-
cess covering the phases from capturing goals
down to assembling agent classes and system
design. Notationsfor representing System speci-
ficationsin various stages and an environment
supporting MAS development are developed
(Wood & Del oach, 2000). Gaiaprovidesguides
for analysisand design of agent-based systems
with the view that a multi-agent system is a
computational organization consisting of vari-
ousinteracting roles(Wooldridgeet al ., 2000).
Role is adopted as the key concept, which is
associated with responsibilities, permissions,
activities, and protocols. Thenew version Gaia
methodol ogy advocates computational organi-
zation abstractions as the key abstraction of
agent-based computing (Zambonelli et al., 2003).
Tropos methodol ogy emphasizesthe use of the
notion of agent and all the related mentalistic
notionsin all phases of software development,
and purports to cover the very early phases of
requirements analysis (Bresciani et al., 2004).

Despite the subtle differences in the re-
search aims and focuses, the above works hold
the same beliefsthat the concept of agent ison
a higher level of abstraction than object, thus
agent-orientation will bring more efficiency to
software engineering than object-orientation.
Most of the existing methodol ogies attempt to
exploit agents’ advantages, such as autonomy
and sociality using the mentalistic notionsin-
cluding goal, plan, role, and so on. Our work
distinguishes from them in that the notions of
caste and scenario, instead of the mentalistic
notions, are the basic concepts for embodying
agents’ power.

Further Work
There is still along way to go before agent-

orientation becomeamaturedevel opment para-

13

Caste-Centric Development of Agent-Oriented Information Systems

digm of information systems. There are many
issues remaining for future work. On thetop of
our research agenda s further investigation of
the languages and tools in industrial context.
We will connect the languages and tools with
the ongoing development of Web technologies
such as Web services, grid computing, and
peer-to-peer computing. Another aspect of
development methods that has not been dis-
cussed indepthinthischapter istesting, verifi-
cation, and validation. Wewill further develop
the formal reasoning system scenario calculus
for analysing SLABS specifications and rea-
soning about the properties of emergent
behaviours. We are al so investigating software
tools to support the formal reasoning. Auto-
matic transformation from SLABS specifica-
tionsto executable systemisalsoin our agenda.

ACKNOWLEDGMENT

The work reported in this chapter is partly
supported by the National Key Foundation Re-
search and Development Program (973) of
China under Grant No. 2005CB321802, the
National High Technology R&D (863)
Programme of China under grants No.
2002AA 116070 and No. 2005AA 113130, and
the Program for New Century Excellent Tal-
entsin University.

REFERENCES

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia,
F., & Mylopoulos, J. (2004). Tropos: An agent-
oriented software development methodology.
Autonomous Agents and Multi-Agent Sys-
tems, 8(3), 203-236.

Burrafato, P., & Cossentino, M. (2002). De-
signing a multi-agent solution for a bookstore

14

with the PASSI methodology. Proceedings of
AOIS 02 at CAISE 02.

FIPA Agent UML Technique Committee.
(2005). Case studies of agent modelling: The
Security Council of United Nations. Re-
trieved May 30, 2005, from http://
www.auml.org/auml/documents/

Jennings, N. R. (1999, June/July). Agent-ori-
ented software engineering. In F. J. Garijo &
M. Boman (Eds.), Multi-Agent System Engi-
neering, Proceedings of 9" European Work-
shop on Modelling Autonomous Agents in a
Multi-Agent World (pp. 1-7), Valencia, Spain.
Berlin: Springer-Verlag (LNAI 1647).

Lehman, M. M., & Ramil, J. F. (2001). Rules
and tools for software evolution planning and
management. Annals of Software Engineer-
ing, Special Issue on Software Manage-
ment, 11(1), 15-44.

Lehman, M. M. (1990). Uncertainty in com-
puter application. Communications of the
ACM, 33(5), 584-586.

Shan, L., & Zhu, H. (2003, October). Modelling
and specification of scenarios and agent
behaviour. Proceedings of the IEEE/WIC
Conference on Intelligent Agent Technol-
ogy (IAT’'03) (pp. 32-38), Halifax, Canada.

Shan, L., & Zhu, H. (2004a, September). Con-
sistency check in modelling multi-agent sys-
tems. Proceedings of COMPSAC’ 04 (pp. 114-
121), Hong Kong.

Shan, L., & Zhu, H. (2004b). Modelling coop-
erative multi-agent systems. Proceedings of
the 2" International Workshop on Grid and
Cooperative Computing (pp. 994-1001),
Shanghai, China. Berlin: Springer-Verlag
(LNCS 3033).

Shan, L., & Zhu, H. (2005). CAMLE: A caste-
centric agent-oriented modelling language and

Caste-Centric Development of Agent-Oriented Information Systems

environment. In R. Choren, A. Garcia, C.
Lucena, & A. Romanovsky (Eds.), Software
engineering for multi-agent systems I11: Re-
search issues and practical applications (pp.
144-161). Berlin: Springer-Verlag (LNCS
3390).

Spivey, J. M. (1992). The Z notation: A refer-
ence manual (2" ed.). Englewood Cliffs, NJ:
Prentice-Hall.

Shen, R., Wang, J., & Zhu, H. (2004). Scenario
mechanism in agent-oriented programming.
Proceedings of APSEC’04 (pp. 464-471),
Busan, Korea.

Wang, J., Shen, R., & Zhu, H. (20053, July 25-
28). Agent-oriented programming based on
SLABS. Proceedings of COMPSAC' 05 (pp.
127-132), Edinburgh, UK.

Wang, J., Shen, R., & Zhu, H. (2005b, Septem-
ber). Caste-centric agent-oriented program-
ming. Proceedings of the 1% International
Workshop on Integration of Software Engi-
neering and Agent Technology at QSIC’ 05,
Melbourne, Australia.

Wang, J., Shen, R., & Zhu, H. (2005c, July 27-
29). Towards an agent-oriented programming
language with caste and scenario mechanisms.
Proceedings of AAMAS 05, Utrecht, The
Netherlands.

Wood, M. F., & DelLoach, S. A. (2000). An
overview of the multiagent systems engineer-
ing methodology. Proceedings of AOSE 2000
(pp. 207-222).

Wooldridge, M., Jennings, N. & Kinny, D.
(2000). The Gaia methodology for agent-ori-
ented analysis and design. Autonomous Agents
and Multi-Agent Systems, 3(3), 285-312.

Zambonelli, F., Jennings, N., & Wooldridge, M.
(2003). Developing multiagent systems: The
Gaia methodology. ACM Transactions on

Software Engineering and Methodology,
12(3), 317-370.

Zambonilli, F., & Omicini, A. (2004). Chal-
lenges and research directions in agent-ori-
ented software engineering. Autonomous
Agents and Multi-Agent Systems, 9, 253-283.

Zhu, H., & Shan, L. (2005). Caste-centric
modelling of multi-agent systems: TheCAMLE
modelling language and automated tools. In S.
Beydeda & V. Gruhn (Eds.), Model-driven
software development, research and prac-
tice in software engineering 11 (pp. 57-89).
Berlin: Springer-Verlag.

Zhu, H. (2001). SLABS: A formal specification
language for agent-based systems. Interna-
tional Journal of Software Engineering and
Knowledge Engineering, 11(5), 529-558.

Zhu, H. (2002). A growth processmodel andits
supporting tool sfor devel oping Web-based soft-
ware. Acta Electronica Sinica, 30(12A), 2090-
2093.

Zhu, H. (2004, September). Cooperative agent
approach to quality assurance and testing Web
software. Proceedings of COMPSAC’'04
(Workshop Papers and Fast Abstracts), the
Workshop on Quality Assurance and Test-
ing of Web-Based Applications
(QATWBA’04) (pp. 110-113), Hong Kong.

Zhu, H. (2005, July). Towards formal reason-
ing about emergent behaviours of MAS. Pro-
ceedings of SEKE’05 (pp. 280-285), Taipei.

Zhu, H. (2006). Towards an agent-oriented
paradigm of information systems. In J.-P.
Rennard (Ed.), Handbook of research on
nature inspired-computing for economics
and management. Hershey, PA: lIdea Group
Reference.

Zhu, H., Greenwood, S., Huo, Q., & Zhang, Y.
(2000, July 30). Towardsagent-oriented quality

15

Caste-Centric Development of Agent-Oriented Information Systems

management of information systems. Proceed-
ings of the 2" International Bi-Conference
Workshop on Agent-Oriented Information
Systems at AAAI'2000 (pp. 57-64), Austin,
TX.

16

