

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGPLAN’05 June 12–15, 2005, Location, State, Country.
Copyright © 2004 ACM 1-59593-XXX-X/0X/000X…$5.00.

Owlet: Event-based Interaction Language for Constructing
Large-Scale Distributed Systems

Abstract
There is an increasing need to build large-scale distributed sys-
tems over the Internet infrastructure. However, due to the auton-
omy and dynamic of resources in these systems, the interactions
among distributed components and services have not been well
supported in the existing programming languages. We present
Owlet, an interaction language based on peer-to-peer content-
based publish/subscribe scheme. Owlet abstracts the Internet as an
environment for the roles to interact, and uses roles to build a
relatively stable view of resources for the on-demand resource
aggregation. It provides language constructs to 1) use distributed
event driven rules to describe interaction protocols among differ-
ent roles, 2) use conversations to correlate events and rules into a
common context, and 3) use resource pooling to do fault tolerance
and load balancing among networked nodes. We have imple-
mented an Owlet compiler and its runtime environment, and built
several Owlet applications, including a peer-to-peer file sharing
application. Experimental results show that the separation of re-
source aggregation logic and business logic significantly eases the
process of building large-scale distributed applications.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features – concurrent
programming structures; D.3.2 [Programming Languages]: Lan-
guage Classifications – concurrent, distributed, and parallel lan-
guages; D.1.3 [Programming Techniques]: Concurrent
Programming – distributed programming.

General Terms Languages.

Keywords resource aggregation, interaction protocol, event-
driven rules, conversation correlation, resource pooling

1. Introduction
The Internet can provide unprecedented amount of resources

by containing a vast number of entities distributed all over the
world. Research has shown that these resources, e.g. content,
storage, CPU cycles, bandwidth, and human presence, are vastly
underutilized [12]. On the other hand, software systems need
more and more resources to accomplish their tasks, e.g. the re-
cently launched Large Hadron Collider (LHC) will produce
roughly 15 petabytes of data a year that need to be analyzed by
scientists around the world. There is an increasing need to build
large-scale distributed system over the Internet infrastructure to
utilize various idle resources to get better overall performance, or

simply get the task done. For example, the LHC@Home project
uses its participants’ computer idle time to simulate how particles
will travel in the tunnel; many peer-to-peer file sharing and video
streaming applications use idle bandwidth and storage of its peers
to gain better individual experience.

However, the interest and behavior of the entities in the Inter-
net may greatly vary throughout the lifetime of a software system,
e.g. resources may spontaneously turn busy, or even leave the
network. One of the key problems emerged is how to on-demand
aggregate resources in the Internet environment, i.e. how to col-
lect, organize, and comprehensively utilize resources without
global information, and form a relatively stable view of individu-
ally transient resources for applications [18]. Resource aggrega-
tion is achieved through interactions between distributed
components and services. One component needs to collect avail-
able services according to certain criteria by sending messages to
other components, and use the response information to organize
the services for load balancing, and when one node fails during
utilization, it may contact another node to do the failed task.

Due to the autonomy and dynamic of component and services
in large-scale distributed systems, the interactions among distrib-
uted components have not been well supported by existing lan-
guages and platforms. Traditional distributed component
technologies, e.g. Enterprise JavaBeans (EJB) and CORBA Com-
ponent Model (CCM), typically use naming services to register
components during system deployment, and the interactions
among components are statically coded. They are suitable for
intranet environment, where resources are usually dedicated to the
components. However, they do not scale well to the Internet,
where node failure will become a common case.

Web services support loosely coupled distributed systems in
service discovery and service execution, and interactions among
services can be specified using service composition languages, e.g.
WS-BPEL [2]. However, load balance in service selection and
fault tolerance in service execution need to be explicitly pro-
grammed, e.g. though XL [11] can automatically retry a failed
action, it can not automatically schedule the action to another
available service.

Software agents are autonomous, proactive, and they interact
with each other to achieve their goals. Agents can model the
autonomous and dynamic resources on the Internet, thus they are
well suited for building large-scale distributed systems [14]. The
existing agent platforms and interaction languages such as OWL-
P [8] and IOM/T [9] focus on describing interactions among dif-
ferent roles of agents, while manual configuration or extra coding
are needed to discover agents, e.g. using directory services.

In this paper, we present Owlet, an interaction language based
on peer-to-peer content-based publish/subscribe scheme. Owlet
uses agents to represent resources on the Internet, and character-
izes the agents into different roles of interactions for resource
aggregation in large-scale distributed systems. The agents are
organized in a peer-to-peer manner, which are capable of adapting

to failures and accommodating transient populations of resources,
while maintaining acceptable connectivity and performance [3].
Unlike the existing programming languages for building distrib-
uted systems, which typically use point-to-point message passing
as their communication primitives, Owlet uses content-based
event publish/subscribe interaction scheme, which is claimed to
provide the loosely coupled form of interaction required in large-
scale settings. An event is asynchronously propagated to all sub-
scribers that registered interest in that given event. This event-
based interaction style brings full decoupling in time, space, and
synchronization between publishers and subscribers [10].

Owlet separates the concerns of constructing distributed sys-
tems into the resource aggregation logic and the business logic.
The aggregation logic is specified by the interactions among roles
to collect and organize available resources. Each role contains
rules that guard on certain events to take some actions. The ac-
tions may be the publishing of another event, or invoking the
business logic. By using roles to characterize the underlying re-
sources, programs can aggregate resources by interacting with the
corresponding role without the knowledge of individual agents
that represent the resources. Although an individual agent may be
transient due to the autonomic and dynamic nature of the resource
it represents, their role as a whole forms a relatively stable view
of the resources. The Owlet runtime is responsible for selecting
individual resources in a proper way, e.g. with load balancing and
fault tolerance. Once the resources are selected, Owlet delegates
the business logic to the existing programming languages and
component technologies, which are well suited for processing
resources in a determined context.

Our main contributions are language constructs that 1) use dis-
tributed event driven rules to describe interaction protocols
among different roles to facilitate collecting, organizing, as well
as utilizing of resources on the Internet, 2) use conversations to
correlate events and rules into a common context to better specify
the interactions in a hierarchical way, and 3) use resource pooling
to do fault tolerance and load balancing among networked nodes
based on the event publish/subscribe interaction scheme. With
these constructs, large-scale distributed systems can be elegantly
built with a clear separation of resource aggregation logic and
business logic.

We have implemented an Owlet compiler and its runtime envi-
ronment, and built several Owlet applications, including a peer-
to-peer file sharing application. Experimental results show that
the separation of resource aggregation logic and business logic
significantly eases the construction of large-scale distributed sys-
tems. For example, a program for the peer-to-peer file sharing
application is about 140 lines in Owlet, and the underlying busi-
ness logic component is very straightforward to implement. Ex-
periments also show that Owlet programs can achieve a high level
of fault tolerance and a certain degree of load balancing among
networked nodes even when individual resources are fairly unsta-
ble.

2. Owlet
Owlet is an interaction language, which specifies interactions
among distributed entities via network communications. Interac-
tions are mandatory for the entities to utilize the resources of oth-
ers in distributed systems. Most of the traditional approaches for
building distributed systems use point-to-point message passing
as the communication primitive to specify the interactions, which
leads to rigid interaction schemes. As in message passing, the
sender of a message must always know the receiver, and when a
message needs to be addressed to multiple receivers, it is usually
sent one by one to each receiver. These rigid interaction schemes

force programmers to write extra code or do manual configuration
to locate the receivers, thus they can not scale well to build large-
scale distributed systems, especially those over the Internet.

We focus on describing the interaction among entities by in-
teraction protocols, and leave the local operations on resources of
each entity to existing component programming technologies.
Protocols involve several roles and address specific purposes of
applications. They emphasize the essence of interactions and omit
local details. Instead of modeling interaction protocols in terms of
point-to-point message passing, we use content-based event pub-
lish/subscribe to capture the interaction scenarios of the partici-
pants to accommodate the open, dynamic nature of the Internet.

We use agent as the basic notion to mirror the autonomous and
dynamic entities providing or requesting resources in the Internet.
Agents are autonomous, proactive, and situated in a particular
environment. They interact with each other through sensors and
actuators [14]. Agents behave autonomously by following their
rules, which use the sensors to perceive the environment to get
inputs, and use the actuators to affect their environment, which
will probably become the inputs of other agents. Based on this
notion, Owlet uses the publish/subscribe interaction scheme to
decouple event subscribers from event publishers, which will turn
the Internet into an environment to provide the surrounding condi-
tions for agents to exist, the mediation of agents’ interactions, and
access to resources [20].

We use roles to characterize agents representing particular re-
sources, e.g. Provider and Requester are two roles in a file
sharing applications, and a Requester agent may interact with
several Provider agents to download files. Agents in the same
role have the same behavior rules to interact with others. Owlet
specifies the interactions by using roles as the first class entity,
because roles can give programmers a relatively stable view of
the resources by representing the agents as a whole, while indi-
vidual agents may be transient. The relationship between roles
and agents are dynamically bound in Owlet, i.e. an agent can join
and quit a role at runtime either under user request, or by its rules.

Figure 1 shows the concept model of an Owlet program, which
defines a set of resource metadata schema and involves several
roles to describe the interactions. Owlet uses XML data model to
represent states, variables and events. It supports primitive types
such as Boolean, integer, floating point number and string. Com-
posite types and list types can be structured hierarchically based
on these primitive types. Owlet expressions use a subset of XPath
expressions [6]. The resource metadata schema defines data types
for describing the properties of the resources. They will be used
by the roles to define states, variables and events in the interac-
tions.

Figure 1. Owlet concept model.

Roles are composed of three parts: state variable declarations,

interaction rules and component references. The rules describe
patterns of interested events and corresponding actions to execute
when an appropriate event is triggered. Rules can spawn conver-

RuleRole

ComponentState

Event

Owlet
Program

Resource
Schema

Conversation

involves
uses

defines

declares encloses

triggers

correlates

encloses

spawns

publishes

1..*

1..*

1..* 1..*
*

*

1..*

1..*

*

*

sations that further correlate events and rules into a common con-
text. The local operations on resources are delegated to the com-
ponents.

Based on this concept model, the main language features of
Owlet are illustrated in the following three subsections.

2.1 Event-driven interactions
Owlet uses distributed event driven rules to describe interaction
protocols among different roles. All the rules are concurrently
guarding on interested events from the environment to take corre-
sponding actions. When an event is published to the environment,
it will trigger all the rules whose patterns can be matched by the
event. So an interaction is composed of two parts: the publishing
of an event, and the rules that guard on the particular event.

Publishing events are basic statements in Owlet. An event
statement is composed of an event name and an arbitrary number
of parameters, e.g.

provide(avails).
The above example means publishing an event named “pro-

vide” with one parameter whose value comes from variable
avails. Note that the event publisher does not need to know the
information of the event receivers, and a single event may usually
notify multiple receivers. However, the event does have informa-
tion about its publisher, together with its name and parameters.

The declaration of a rule starts with the keyword when, and is
also composed of two parts: a pattern of the events to be matched
and statements (e.g. publishing an event) to execute when an
event matches the pattern. A pattern can specify various con-
straints on events it matches, e.g. event publisher, event name,
and the type or value of its parameters. Figure 2 shows an exam-
ple rule. Its pattern will match events that 1) is published by an
agent of role Provider, 2) is named “provide”, and 3) has one
parameter whose type is an integer list.

Figure 2. An example rule.

After the matching, the unbound variables in the pattern will
be bound to corresponding values from the event, which then can
be used by the statements of the rule. For instance, in Figure 2, p
will bind to the identity of the event publisher, and avails will
bind to the first parameter of the event, which must be an integer
list.

Figure 3. A rule that matches a particular event publisher.

An agent has a global unique identity to distinguish from each
other, e.g. a UUID. Patterns can specify the constraints of the
event publisher by its role or by its identity. The keyword self
is used to represent the identity of the current agent. For example,
Figure 3 shows a rule whose pattern will match events named
“take” with one parameter of type File, and are published by the
agent itself.

Figure 4. A rule that simulates point-to-point messaging.

This publish/subscribe interaction scheme decouples event
publishers from event subscribers. Moreover, point-to-point mes-

saging can still be achieved by explicitly specifying the identity
of the receiver in the parameters, and use a rule with pattern that
matches the parameter to the identity of the agent, as shown in
Figure 4. When an agent of Requester role publishes an event,
e.g.

 request(p, need).
The rule in Figure 4 will only be triggered for agent whose

identity equals to p.
This event publish/subscribe interaction scheme is more ex-

pressive than point-to-point message passing. Method calls in
object-oriented paradigm always imply a reference to the invoked
object, e.g. keyword this in Java. In addition to the keyword
self representing the identity of the current agent, the event-
driven rules in Owlet always bear the identity of the publisher of
an event, which is crucial for providing a loose coupled way to
describe interactions in large-scale distributed systems.

2.2 Conversations
Owlet uses conversations to correlate events and rules into a
common context. We can describe interactions by specifying all
the rules flatly. However, this flat structure is not convenient for
specifying complex interactions of large-scale distributed systems,
where certain steps of the interactions may depend on other steps,
i.e. the interaction rules may have dependencies. Conversations
are used to represent these dependencies by arranging rules in a
hierarchical way.

Figure 5 demonstrates part of the rules of the Requester role
in a file sharing application. The rules are arranged into two levels
by a conversation. These bring two benefits: 1) by building these
hierarchies, the dependencies among rules are enforced to reduce
undesired interactions; 2) the variables in the outer level (e.g.
file) become context variables and can be easily accessed from
the inner levels.

Figure 5. Arranging rules hierarchically by a conversation.

Further, rules are used to specify the protocol of interactions,
and there may be multiple instances of the same interaction proto-
col around different individual resources. For example, a Re-
quester agent may request multiple different files from Provider
agents simultaneously. The events and rules must be properly
correlated to distinguish their interactions around different re-
sources. In Figure 5, all the rules and events are augmented with a
file.digest parameter, which is the digital digest of the file
content that distinguishes one file from another, e.g. MD5 digest.
However, this tedious correlation mechanism requires the pro-
grammers to write the correlation token many times wherever
necessary.

Although the choosing of the token is specific to applications,
the correlation mechanism can be simplified by managing the
token in a conversation. As shown in Figure 6, the conversation is
created by using the keyword converse with the file.digest
as the token. All the events published in a conversation are auto-

when (Requester r: request(self, Piece need)) {
...

}

when (Provider p: provide(int* avails)) {
...

}

when (self: take(File file)) {
...

}

// role Requester
when (self: take(File file)) {

converse {

when (self: request(file.digest)) {
...

request(file.digest, needs);
}

when (Provider p: provide(file.digest, int* avails)) {
...

}
}

}

matically augmented with the token of its conversation, and all
the rules in a conversation will match events with the same token
in addition to its pattern.

Figure 6. Managing the correlation token in a conversation.

When interactions in a conversation are complete, the context

variables and rules can be released by using the keyword con-
clude in a rule.

By using conversations, the dependencies among different
steps in a conversation are represented in a hierarchical way, and
correlations within concrete processes of the interactions can be
elegantly specified in Owlet.

2.3 Resource pooling
Owlet uses resource pooling to do fault tolerance and load balanc-
ing among networked nodes. It is extremely necessary when we
are employing resources in the Internet, which may fail or leave
spontaneously. And certain degree of load balancing is also nec-
essary for tasks to be effectively processed.

Since Owlet uses event publish/subscribe interaction scheme,
the publishing of an event are addressed to all agents that sub-
scribe this particular event. This interaction scheme makes it di-
rect to have multiple redundancy resources to fault tolerantly do a
task. Although this makes the fault tolerance very easy, employ-
ing all available resources to do a job is indeed a waste of re-
sources, which will eventually make the system unusable.

Owlet provides language constructs that specifies the number
of the redundant receivers that an event will trigger in a conversa-
tion. As shown in Figure 7, the checkPrime(sn) event is anno-
tated with an integer limiting the number of its receivers. This
event is a request to use the CPU cycles of others to test whether
sn is a prime number. In this case, there will be at most four re-
ceivers of this event. Each of them will do the test and publish the
result using a finish(result) event.

Figure 7. Set the limit of redundancy event receivers.

Owlet uses a resource pool to do resource provisioning and

scheduling for programmers. When publishing an annotated event
in a conversation, a corresponding resource pool is created. A
certain number of potential receivers are collected within a provi-
sioning threshold or deadline. These receivers are sorted by some

criteria, e.g. their current load or their capabilities. Then the
events are delivered to the limited number of receivers. When the
first event from these chosen receivers is captured by a rule inside
the conversation, the resource pool is released.

It is possible that none of the receivers survives to finish the
task. A built-in fail() event will be published inside the conver-
sation to delegate the processing to the programmer, as shown in
Figure 7.

The resource pooling capabilities of Owlet makes the process
of fault tolerance and load balancing transparent for the pro-
grammers in building large-scale distributed systems.

3. Owlet Implementation
We have implemented an Owlet compiler and its runtime envi-

ronment1 based on Java, and an Eclipse2 plug-in is also developed
to help programmers to write/compile/debug Owlet programs.
The compiler is built using JavaCC3 to compile Owlet source
code into Java source code. Figure 8 lists the syntax of Owlet’s
main language constructs.

Figure 8. BNF syntax of Owlet’s main language constructs.

The Owlet runtime environment provides necessary mecha-

nisms to support Owlet language constructs. As shown in Figure 9,
it has four layers: the transport layer, the overlay layer, the ser-
vices layer and the role container layer.

The transport layer provides basic connectivity to support end-
to-end communications among networked entities in the Internet.
It provides a uniform interface for communication via various

1 http://owlet-code.sourceforge.net
2 http://www.eclipse.org
3 http://javacc.dev.java.net

// role Requester
when (self: take(File file)) {

converse (file.digest) {

when (self: request()) {
...

request(needs);
}

when (Provider p: provide(int* avails)) {
...

}
}

}

converse (sn) {
checkPrime(sn) -> 4;

when (Checker c: finish(int result)) {
...

conclude;
}

when (self: fail()) {
...

}
}

Program ::= Community [Schema] (Role)+
Community ::= community Name ;

Schema ::= schema { (TypeDef)* }
TypeDef ::= ID { (Type ID ;)* }
Type ::= (bool | int | float | string | ID) [*]

Role ::= role ID { (State | Component | Rule)* }

State ::= Type ID [= Expression] ;
Component ::= local ID URN ;
Rule ::= When (, When)* { (Statement)* }

When ::= when (Pattern)
Pattern ::= Source : ID ([Param (, Param)*])
Source ::= self | [Name] ID
Param ::= Expression | Type ID

Statement ::= Join | Quit | Event | Converse | Conclude
| Declare| Assign | If | Enum | Break | Sync
| Invoke | { (Statement)* }

Join ::= join Name ;
Quit ::= quit Name ;
Event ::= ID ([Expression (, Expression)*]) ;
Converse ::= converse (Expression) { (Statement)* (Rule)* }
Conclude ::= conclude ;
Declare ::= Type ID [= Expression] ;
Assign ::= Expression = Expression ;
If ::= if (Expression) Statement ;
Enum ::= enum ID : Expression do Statement ;
Break ::= break ;
Sync ::= synchronized (Expression);
Invoke ::= ID . ID ([Expression (, Expression)*]) ;

Expression::= CreateExpr | PathExpr | InvokeExpr
CreateExpr::= Type ([Expression (, Expression)*])
PathExpr ::= ID | PathExpr . ID | PathEpxr [Expression]
InvokeExpr::= (Type) ID . ([Expression (, Expression)*])

Rui
插入号
[-> Expression]

transport protocols such as TCP, UDP and HTTP. The transport
layer abstracts the Internet as a peer-to-peer network, which is
used by the overlay layer to form certain network topologies.

The overlay layer provides consistent routing capabilities for
the peers by using overlay network protocols such as Chord [21]
and FISSIONE [17], which are used by the services layer to pro-
vide resource aggregation services.

Figure 9. Owlet runtime implementation.

There are two services in the services layer: event service and

resource pooling service. The event service provide efficient dis-
tributed content-based publish/subscribe support based on the
underlying overlay network. Our implementation of the event
service is based on the mechanism described in Ferry [25]. The
resource pooling service provides resource provisioning and
scheduling based on the event service and the transport layer to
provide fault tolerance and load balancing support for Owlet pro-
grams.

The role container is the core of the Owlet runtime environ-
ment. First, it provides the dynamic binding of roles and agents,
i.e. agents can join and quit a role at runtime. When an agent joins
a role, it will automatically download the corresponding Java
packages as described by the application’s XML descriptor. Then
it instantiates the states, bind the JavaBeans components, and
assembles the rules to the rule engine. When an agent quits a role,
all these components will be dissembled properly. Second, the
role container has a rule engine that manages all the rules of the
agents. When an event is matched to the pattern of a rule, the
actions of the rule will be executed. Third, the role container
manages the lifecycle of all the conversations and several built-in
events. And finally, it manages the interfacing with the underly-
ing components. We employ JavaBeans as the underlying compo-
nent technology to handle the business logic. When invoking a
method of a Java component, Owlet data types are automatically
converted to corresponding Java types. And if there is a return
value, it will be converted to the corresponding Owlet type. Since
we use XML data model in Owlet, the conversion is straight for-
ward to implement.

3.1 Event-driven interactions
Owlet programs describe interactions by using event pub-
lish/subscribe as the communication primitive. When an event is
published, it should be propagated to all the subscribers that have
subscriptions on such event. The subscription is based on the
pattern that can match the event content, e.g. the role or identity
of its publishers, its name, and the type or value of its parameters.
A content-based publish/subscribe event service [10] is appropri-
ate to efficiently support this kind of communications.

The event statement in Owlet will be compiled into Java code
that publishes the event to the event service. The pattern in a rule
statement is compiled to Java code that subscribes to the event
service with a callback object that will be called when events that
match the pattern are published to the event service. The callback
object will schedule a thread from the thread pool to execute the
actions of the rule.

Considering to build large-scale distributed systems over the
Internet infrastructure, we have implemented a peer-to-peer con-
tent-based publish/subscribe event service according to Ferry [25],
to accommodate the scalability of large-scale distributed systems.
This implementation employs the overlay network to efficiently
distribute the process of event matching across the network. As
shown in Figure 10.

Peers in the overlay network cooperate to provide the content-
based publish/subscribe event service. Events have properties
such as name, publisher, parameters and etc. When subscribing to
the event service, the subscription is delegated to a peer by ran-
domly choose a property name of the event, and use it as the des-
tination to route this subscription to the peer in the overlay
network. By doing this, subscriptions are scattered among a de-
termined set of peers. When an event is published, it will be
routed to all the peers by using every property name of the event
as the destination in the overlay network. Then, the matching of
patterns and the event are processed at each peer holding the sub-
scriptions, and they will notify the corresponding subscriber
whose pattern matches the event. The consistent routing capabil-
ity of the underlying overlay network ensures that all subscribers
will eventually receive the right event.

Figure 10. Content-based event publish/subscribe service based
on peer-to-peer overlay network.

3.2 Conversations
Conversations are used to represent the dependencies between
interaction rules by arranging them in a hierarchical way. They
provide the context for the rules to access the shared variables and
manage the correlation tokens of events and rules. A conversation
can have sub-conversations, whose tokens are prefixed with the
token of its parent conversation. All the conversations are man-
aged by a conversation tree in the Owlet runtime environment.
The first level rules of a role constitute the root conversation,
which has a predefined root correlation token.

Rules are aware of their conversation context. They can access
variables defined in the conversation and all its parent conversa-
tions. In the actions of a rule, new conversations can be created as
sub-conversations of the current conversation, and all event state-
ments will automatically augment the correlation token of the
current conversation to the events.

When a conversation is created, it will subscribe all its enclos-
ing rules to the event service, and augment those subscriptions

Transport
(End-to-end communication: TCP/UDP/HTTP)

Overlay
(Consistent routing: Chord/FISSIONE)

Event Service
(Event publish/subscribe)

Pooling Service
(Provisioning/Scheduling)

Role Container
(join/adapting, rule engine, conversation, component interfacing)

S

S

Overlay network

S

property name 1

property name 2

property name N

P

...

Subscribe

Publish

Rui
删划线

Rui
替换文本
disassembled

Owlet Code
(*.owlet)

owletc

Application
Descriptor

(*.xml)
Java Bytecode

(*.class)

Owlet Runtime Environment

JavaBeans
(*.jar)

Java Code
(*.java)

Owlet Library
(*.jar)

Java Bytecode
(*.class)

Java Bytecode
(*.class)

javac
Resource
Descriptor

(*.xml)

with an extra constraint to match the event token with the conver-
sation token. The matching of the event token and the conversa-
tion token is a prefix match, i.e. the conversation token must be a
prefix or equal to the event token. This allows events in a conver-
sation to trigger rules in its parent conversations.

When a conversation is concluded, it will first conclude all its
sub-conversations, and then unsubscribe all its enclosing rules
from the event service. Any running threads of the actions of its
rules will be interrupted. Finally, all its context variables are re-
leased.

3.3 Resource pooling
The resource pooling mechanism in the Owlet runtime environ-
ment employs multiple redundancy resources for a single task to
provide fault tolerance in large-scale distributed systems, where
resources are usually tremendous for applications to utilize. It also
provides a certain degree of load balancing among the resource
according to their quality of service properties, e.g. system load,
task queue size, and etc.

There are two phases in a resource pooling process: resource
provisioning and resource scheduling. Figure 11 shows a resource
pooling process based on the event publish/subscribe service.
Some stereotypes are used in the sequence diagram to denote
different operations on events.

The provisioning phase begins when executing an event state-
ment with resource pooling annotations, which specify the maxi-
mum number of redundant receivers of the event. Instead of
publishing it to the event service, the annotated event will be de-
livered to the pooling service, which will create a resource pool
for holding potential receivers of the event. The resource pool is
created with a globally unique serial number to distinguish from
each other. Then, the event will be published to the event service
with annotations about the serial number and transport address of
the resource pool. The event service acts as normal, and notifies
corresponding subscribers of the event. When a node receives the
annotated event, it will not immediately schedule a thread to exe-
cute the actions of the corresponding rule. Instead, its pool service
will send the requesting node an “available” message about its

QoS properties. The resource pool of the request node is waiting
for the messages within some threshold or deadline. And when
the provisioning is finished, the resource pool of the request node
will have collected a set of potential receivers of the event, to-
gether with their QoS properties.

Then the scheduling phase begins. The resource pool will sort
all the potential receivers by evaluating their QoS properties. Next,
“employ” messages will be sent to a number of the best receivers
according to the initial event statement, and “cancel” messages
will be sent to the rest. As shown in Figure 11, Node 2 and Node N
are employed, while Node 1 is cancelled. The collected nodes will
schedule the actions of the corresponding rule to execute when
employed, or discard the event when cancelled. After that, when
an employee node finishes the task, it should publish a response
event. The event is annotated with the serial number of the corre-
sponding resource pool. When the event service delivers the event
to the requesting node, the pooling service will close the resource
pool specified by the serial number, and notify the response event
to the agent. Upon closing, the resource pool will send “cancel”
messages to all the other employee nodes.

Figure 12. The process of developing an Owlet application.

Figure 11. The process of resource pooling based on publish/subscribe event service.

Rui
删划线

Rui
替换文本
1

Rui
删划线

Rui
替换文本
2

However, it is possible that none of the employee nodes can
survive to publish a response event due to network failures and
etc. To detect this situation, the pooling service uses a heartbeat
timer to check the conditions of all its employee nodes. If an em-
ployee node failed to send a heartbeat message to the resource
pool for some threshold time interval, it is removed from the pool.
When a pool runs out of employee nodes, a built-in fail event will
be triggered for delegating the processing to the programmer.

3.4 Deployment
Besides supporting various language constructs for specifying
resource aggregation logic, the Owlet runtime environment also
facilitates the deploying and managing of applications for large-
scale distributed systems.

XML descriptors are used to deploy applications to distributed
nodes. Figure 12 shows the process of developing an Owlet appli-
cation. First, the resource aggregation logic and the business logic
are specified by the developers in an Owlet program and Java-
Beans components respectively. The Owlet program is compiled
into two parts: its corresponding Java classes and an XML de-
scriptor file for the application. The descriptor contains metadata
about the application, e.g. application name, version, codebase,
and various configuration parameters. Then, the developers will
package the Java classes and JavaBeans components and put them
at some network accessible locations, e.g. via FTP/HTTP proto-
cols. The codebase of the descriptor file is set to the URL of the
packages. Configuration parameters for the services and overlay

networks are set in the descriptor file, e.g. provisioning threshold
and timeout, transport addresses of the well-known peers in the
overlay network, and etc. Finally, the descriptor file is released to
network accessible locations.

 The URL of an application descriptor is used to launch the
application in a node, which will join the role whose name is
specified as a fragment of the URL, e.g. the following URL iden-
tifies the Provider role of the file sharing application.

http://owlet-code.sourceforge.net/FileSharing.xml#Provider
The Owlet runtime environment will parse the descriptor file,

download the Java packages, and join the specified role. A Web
console and telnet console can be used to provide URLs to the
Owlet runtime environment.

Resource descriptor files can also be used to launch an appli-
cation around particular resources. A resource descriptor contains
two parts: a URL referencing the role to join, and an event that
will be publishing once joining the role. For example, in the file
sharing application described in the next section, a resource de-
scriptor will reference the Requester role, and a take event
which contains the metadata of the file to download.

4. Experiments
In this section, we first demonstrate that the separation of re-

source aggregation logic and business logic can significantly ease
the construction of large-scale distributed systems by building a
peer-to-peer file sharing application in Owlet. Then, we illustrate
that Owlet programs can achieve a high level of fault tolerance

Figure 13. Owlet program of a peer-to-peer file sharing application.

role Requester {

local helper java:beans.FileHelper;

when (self: take(File file)) {
file = (File) helper.validate(file);

converse (file.digest) {
request();

when (self: silent(10000)),
when (self: request()) {

Piece* pending = file.pieces[state=="empty" || state=="req"];
if (! pending) {

join Provider; share(file); conclude;
} else {

Piece* needs = file.pieces[state=="empty"];
if (needs) // not empty

request(needs.id);
}

}

when (Provider p: provide(int* avails)) {
synchronized (file) {

enum a: avails do {
Piece* needs = file.pieces[id == a && state=="empty"];
if (needs) { // not empty

Piece need = needs[0];
need.state = "req";
converse (need.digest) {

when (p: provide(string url)) {
string path = file.path;
if ((bool) helper.fetchPiece(need, url, path)) {

need.state = "solid";
join Provider; share(file);

} else need.state = "empty“;
request();
conclude;

}

when (self: raise(string exception, string message)) {
need.state = "empty"; conclude;

}
}
request(p, need);
break;

} // end if of line 28
} // end enum of line 26

} // end synchronized of line 25
} // end when of line 24

} // end converse of line 8
} // end when of line 5

}

1
2
3
4
5
6
7
8

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

role Requester {

local helper java:beans.FileHelper;

when (self: take(File file)) {
file = (File) helper.validate(file);

converse (file.digest) {
request();

when (self: silent(10000)),
when (self: request()) {

Piece* pending = file.pieces[state=="empty" || state=="req"];
if (! pending) {

join Provider; share(file); conclude;
} else {

Piece* needs = file.pieces[state=="empty"];
if (needs) // not empty

request(needs.id);
}

}

when (Provider p: provide(int* avails)) {
synchronized (file) {

enum a: avails do {
Piece* needs = file.pieces[id == a && state=="empty"];
if (needs) { // not empty

Piece need = needs[0];
need.state = "req";
converse (need.digest) {

when (p: provide(string url)) {
string path = file.path;
if ((bool) helper.fetchPiece(need, url, path)) {

need.state = "solid";
join Provider; share(file);

} else need.state = "empty“;
request();
conclude;

}

when (self: raise(string exception, string message)) {
need.state = "empty"; conclude;

}
}
request(p, need);
break;

} // end if of line 28
} // end enum of line 26

} // end synchronized of line 25
} // end when of line 24

} // end converse of line 8
} // end when of line 5

}

1
2
3
4
5
6
7
8

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

role Provider {

local helper java:beans.FileHelper;

when (self: share(File file)) {

converse (file.digest) {

when (Requester r: request(int* needs)) {
Piece* avails = Piece* ();
enum n: needs do {

avails = avails + file.pieces[id==n && state=="solid"][0];
}

if (avails) // not empty
provide(avails.id);

}

when (Requester r: request(self, Piece need)) {
Piece p = file.pieces[id==need.id][0];
if (p.state =="solid" && p.digest == need.digest) {

converse (p.digest) {
string url = (string) helper.getURL(p);
provide(url);
helper.sharePiece(p, url, 20000);
conclude;

}
}

}
} // end converse of line 7

} // end when of line 5
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

role Provider {

local helper java:beans.FileHelper;

when (self: share(File file)) {

converse (file.digest) {

when (Requester r: request(int* needs)) {
Piece* avails = Piece* ();
enum n: needs do {

avails = avails + file.pieces[id==n && state=="solid"][0];
}

if (avails) // not empty
provide(avails.id);

}

when (Requester r: request(self, Piece need)) {
Piece p = file.pieces[id==need.id][0];
if (p.state =="solid" && p.digest == need.digest) {

converse (p.digest) {
string url = (string) helper.getURL(p);
provide(url);
helper.sharePiece(p, url, 20000);
conclude;

}
}

}
} // end converse of line 7

} // end when of line 5
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

community FileSharing;

schema {

Piece {

int id;

int offset;

int length;

string digest;

string state;

}

File {

string name;

string path;

string digest;

int length;

int blockSize;

Piece* pieces;

}

} // end schema

community FileSharing;

schema {

Piece {

int id;

int offset;

int length;

string digest;

string state;

}

File {

string name;

string path;

string digest;

int length;

int blockSize;

Piece* pieces;

}

} // end schema

(a) Resource schema definitions

(b) Provider role (c) Requester role

and a certain degree of load balancing among networked nodes
when individual resources are fairly dynamic by using an Owlet
distributed prime number checking program.

4.1 Constructing a peer-to-peer file sharing application
Peer-to-peer file sharing is a typical large-scale distributed appli-
cation that uses the idle bandwidth and storage of other nodes to
facilitate file transfer in the Internet. It has the advantage of scal-
ability even when a large number of nodes are downloading files
from one node, because each requesting node will provide a trunk
of the file for other requesting nodes when possible. Files are
usually split into small pieces, so that different pieces can be
fetched from different nodes.

When building such an application in Owlet, we first separate
it into two parts: 1) the resource aggregation logic that locates the
node providing certain pieces, and 2) the business logic that trans-
fers pieces from the located nodes.

The first part is the essence of the peer-to-peer file sharing ap-
plication, which can be elegantly specified using Owlet, as shown
in Figure 13. The metadata of files and pieces used in the applica-
tion are defined in Figure 13 (a). For instance, the metadata of a
file include: the name of the file (name), the path to store the file
(path), the MD5 digest of the file (digest), the length of the file
(length), the size of pieces (blockSize) and a list of pieces
(pieces). The metadata of a piece include: the number of the
piece (id), the offset of the piece in the file (offset), the length
of the piece (length), the MD5 digest of the piece (digest) and
the downloading state of the piece (state). The state of a piece
can be solid, empty or requesting.

Agents are characterized into two roles: Provider and Re-
quester. Their rules are specified in Figure 13 (b) and (c) re-
spectively. A provider agent provides solid pieces for requester
agents. When the user issues a “share” event with the metadata of
a file, the rule at lines 5-31 in Figure 13 (b) will be triggered. It
will create a conversation by using the digest of the file as the
correlation token. The conversation has two enclosing rules. The
rule at lines 9-17 in Figure 13 (b) will be triggered when a re-
quester agent publishes a “request” event with a list of piece
numbers that it needs. According to this rule, the provider agent
will select all available solid pieces the requester needs, and pub-
lish a “provide” event containing a list of available piece numbers.
The rule at lines 19-29 in Figure 13 (b) will be triggered when a
requester agent explicitly publishes a “request” event to this agent
asking for a piece. According to this rule, the provider agent
checks the state of the piece, and creates a new conversation by
using the digest of the piece as the correlation token. In this sub-
conversation, it publishes a “provide” event to tell the requester
agent the URL to fetch the piece.

A requester agent request pieces from provider agents. And
once it has a solid piece, it will join the provider role to provide it
to other requesters. When the user issues a “take” event with the
metadata of a file, the rule at lines 5-53 in Figure 13 (c) will be
triggered. It will first validate the metadata of the file to check the
state of all the pieces, and then create a conversation by using the
digest of the file as the correlation token. The conversation has
two enclosing rules. The rule at lines 12-22 in Figure 13 (c) will
be triggered when the agent publishes a “request” event, or a
built-in “silent” event. The silent event is published by the con-
versation when there is no event received or published in the
specified time interval. According to the rule, if the agent has
empty pieces to download, it will publish a “request” event with a
list of the piece numbers. If there are no pending pieces, it will
join the Provider role to share the file and conclude the conversa-
tion. The rule at lines 24-52 in Figure 13 (c) will be triggered

when a provider agent publishes a “provide” event with a list of
available piece numbers. According to the rule, it will find the
first empty piece which is also in the available list, and set the
state of the piece to “requesting”. Note that the access to the vari-
able file is synchronized to make sure an empty piece will be
fetched from one provider only. Then new conversation is created
by using the digest of the piece as the correlation token, and a
“request” event is published explicitly to the provider to ask for
the chosen piece. The sub-conversation has two enclosing rules.
The rule at lines 33-41 in Figure 13 (c) will be triggered when the
provider publishes a “provide” event with the URL to fetch the
piece. If the download succeeds, the agent will join the Provider
role to share the piece, otherwise the piece is set to empty state.
The rule at lines 43-45 in Figure 13 (c) will be triggered when the
agent publishes a built-in “raise” event to report exceptions in the
conversation.

The business logic for transferring pieces is provided by a
JavaBeans component, which is straightforward to implement.
For instance, the component helper provides four methods. A
provider agent uses the getURL(piece) method to get a network
accessible location for a piece, and uses sharePiece(piece,
url, timeout) method to share the piece at the specified loca-
tion. A requester agent uses the validate(file) method to
check the pieces of the file (e.g. MD5 digest) and the fetch-
Piece(piece, url, path) method to download the piece
from the location and save it to the path.

The Owlet program of the peer-to-peer file sharing application
is about 140 lines, which clearly separates the resource aggrega-
tion logic and business logic to facilitate the constructing of large-
scale distributed systems. The application can be easily deployed
and executed without any central control.

We have also rewritten the interactions of a distributed Web
page crawler application using Owlet. It originally has 11,000
lines of Java code, in which about 3,000 lines are used to specify
the interactions using TCP sockets. Its corresponding Owlet pro-
gram is about 160 lines, and the rest of its Java code are used as
JavaBeans components for the business logic.

4.2 Experimenting fault tolerance and load balancing
Although the Internet can provide a large amount of resources, the
interest and behavior of these resources may greatly vary through-
out the lifetime of a software system. Resources can spontane-
ously turn busy, or leave the network without any notification. To
comprehensively utilize these resources to build large-scale dis-
tributed systems, Owlet provide language constructs that employ
multiple redundant resources concurrently for a single task.

A distributed prime number checking program is built using
Owlet. To reflect the autonomous and dynamic nature of re-
sources on the Internet, we inject random behaviors into the
checking program so that about 40% of the checking processes
will fail. We deploy the program to 64 nodes4 and submit 1000
prime numbers5 with different redundancy settings at each run.
The tasks are submitted at different intervals, and the resources

4 These nodes are Xen virtual machines running on 16 PowerLeader
PR2510D hosts with dual Intel Xeon E5335 quad core processors and
4GB memory. Each Xen VM is exclusively configured with two cores and
512MB memory, and runs Debian GNU/Linux 4.0r3 (x86) with SUN JDK
1.6.0
5 These prime numbers are from 200000000000027 to 20000000003249,
and each of them needs about 10 seconds to check on a single core.

Re
sp

on
se

 t
im

e
(s

)

Redundancy limit
1 2 4

(a) Task submission interval = 2s

sorted

unsorted

sorted

unsorted

20

10

0

30

0

Re
sp

on
se

 t
im

e
(s

)

1 2 4

sorted

unsorted

sorted

unsorted

20

10

30

0

Re
sp

on
se

 t
im

e
(s

)

1 2 4

sorted

unsorted

sorted

unsorted

20

10

30

0

Re
sp

on
se

 t
im

e
(s

)

1 2 4

20

10

30

Redundancy limit
(b) Task submission interval = 1s

Redundancy limit
(c) Task submission interval = 0.75s

Redundancy limit
(d) Task submission interval = 0.5s

sorted

unsorted

sorted

unsorted

are scheduled with or without sorting by their QoS properties
after the provisioning.

Figure 14. Relationship between the success rates and redun-
dancy limits at different configurations.

Figure 14 shows the relationship between the success rates and

the redundancy limit in the Owlet program. When the resources
are sorted by their QoS properties before scheduling, the success
rates increase as expected when using larger redundancy limits in
the Owlet program for all the different task submission intervals.
However, when the resources are not sorted before scheduling,
the success rates decrease significantly for smaller task submis-
sion intervals in comparison to the sorted ones. Because smaller
task submission intervals will increase system loads. The sorting
provides a certain degree of load balancing among the nodes.
When the sorting is absent, some nodes may be overloaded. And
they do not have enough computing power to finish the task or
even send the heartbeat messages in time. Moreover, when the
redundancy limit increases, there will be more redundant tasks
submitted to the system, which will worsen the success rates.

Figure 15. Relationship between response time and redundancy
limits at different configurations.

Figure 15 shows the relations between the average response

time of the successful tasks and the redundancy limit. The re-
sponse time with sorting of the nodes before scheduling is more

stable than that without sorting. Except in Figure 15 (c) which has
the smallest task submission interval, when the redundancy limit
is set to 4, the response time increases significantly even with
sorting. Because there are 2 tasks submitted a second, each will
employ 4 nodes, and a task will take at least 10 seconds to finish.
So it requires at least 80 nodes to adequately process the tasks,
which exceeds the actual number of nodes in the experiments.
Almost all the nodes will be overloaded in this situation, so the
response time spikes. However, this will hardly happen when we
are building applications in the Internet, where resources are usu-
ally abundant.

As shown by the experiments, with the help of the runtime en-
vironment, Owlet programs can easily achieve a high level of
fault tolerance and a certain degree of load balancing among net-
worked nodes when individual resources are fairly unstable in
large-scale distributed systems.

5. Related Work
Event-based approaches have been used to provide asynchrony
and decoupling in distributed systems. For example, SEDA [23] is
a staged event-driven architecture that supports massive concur-
rency demands and simplifies the construction of well-
conditioned services. Mace [16] is a language extension based on
state transition on events that provides a unified framework for
networking and event handling, while programming components
in a controlled and structured manner. Basically, they focus on the
utilization of resources, not covering how to collect and organize
resources in large-scale distributed systems. Owlet uses event
publish/subscribe interaction scheme as the communication primi-
tive that can elegantly specify resource aggregation logic.

Languages for specifying interaction protocols have been stud-
ied in Web services. WS-BPEL [2][19] is a service composition
language that provides a set of message exchange primitives and
concurrency constructs to specify interactions among services in a
business process. XL [11] is a service language that provides high
level and declarative constructs for building Web services, e.g.
the retry of failed services. GPSL [7] is a service language that
integrates messaging, concurrency, and XML data manipulation
cohesively. Because their communication primitives are based on
point-to-point message passing, programmers need to bind ser-
vices manually at deployment and explicitly handle fault toler-
ance and load balancing when using services on the Internet.

Interaction-oriented programming emerges as new paradigm in
multi-agent systems based on interacting agents, active objects,
and active wrappers of legacy components [13]. For example,
OWL-P [8] provides primitives such as roles, the messages ex-
changed between them, and declarative rules describing the ef-
fects of messages in terms of commitments. IOM/T [9] is an
interaction description language which has correspondences with
AUML sequence diagrams. However, they focus on describing
interactions among a prior determined set of agents, i.e. they do
not have language support for discovering and organizing other
agents. SLABSp [22] uses scenario rules to specify interactions
among agents in patterns of action sequences, but it has little sup-
port for message correlation, fault tolerance and load balancing.
PIAX [15] is a framework that integrates mobile agent based mes-
saging and peer-to-peer discovery mechanisms transparently with
application layer multicasts. Channeled Multicast [4] uses themed
multicast to facilitate the specification of interaction protocols,
while Owlet provides a more expressive means by using content-
based publish/subscribe interaction scheme.

There are also many distributed computing middleware aimed
at building large-scale distributed systems. JXTA [12] technology
is a network programming and computing platform based on Java

Su
cc

es
s

ra
te

 (
%

)

Redundancy limit

100

80

60

40

20

0
1 2 4

100

80

60

40

20

0
1 2 4

(a) Task submission interval = 2s

sorted

unsorted

sorted

unsorted

Su
cc

es
s

ra
te

 (
%)

sorted

unsorted

sorted

unsorted

Su
cc

es
s

ra
te

 (
%

)

sorted

unsorted

sorted

unsorted

Su
cc

es
s

ra
te

 (
%

)

sorted

unsorted

sorted

unsorted

(b) Task submission interval = 1s

(c) Task submission interval = 0.75s (d) Task submission interval = 0.5s

Redundancy limit

Redundancy limit Redundancy limit

100

80

60

40

20

0
1 2 4

100

80

60

40

20

0
1 2 4

100

80

60

40

20

0
1 2 4

100

80

60

40

20

0
1 2 4

100

80

60

40

20

0
1 2 4

100

80

60

40

20

0
1 2 4

that provide a framework for building peer-to-peer networking
applications. BIONIC [1] is an open infrastructure for network
computing that provides a framework for building large-scale
distributed applications. ProActive [5] is an open source Java
library aiming to simplify the programming of multithreaded,
parallel, and distributed applications. They provide frameworks
and libraries for building distributed systems which conform to
certain schemes.

6. Conclusion and Future Work
In this paper, we present Owlet, an interaction language based

on event publish/subscribe communication primitive to specify
the interactions among distributed nodes to collect, organize and
comprehensively utilize of the resources on the Internet. It ab-
stracts the resources as agents, and the interactions are described
in terms of different roles of the agents. By using peer-to-peer
overlay network and content-based publish/subscribe event ser-
vice as the enabling technologies, Owlet provides the language
constructs that facilitate the construction of large-scale distributed
systems by separating its resource aggregation logic and business
logic.

We have implemented an Owlet compiler and its runtime envi-
ronment. Experiments show that large-scale distributed applica-
tions can be elegantly constructed in Owlet, and a high level of
fault tolerance and a certain degree of load balancing among net-
worked nodes can be achieved.

It is considered to incorporate more resource pooling mecha-
nisms as described in [24] to provide more reliable access to re-
sources on the Internet. We are also investigating the trust and
incentive mechanisms in building distributed applications to pro-
vide better quality of services in large-scale distributed system.

References
[1] Anderson, D.P. BOINC: A System for Public-Resource Computing

and Storage. In Proc. 5th Int'l Workshop on Grid Computing
(GRID'04), IEEE CS Press, pp. 4-10, 2004.

[2] Alves, A., Arkin, A. and et al. Web Services Business Process Exe-
cution Language Version 2.0, OASIS Standard, 2007.

[3] Androutsellis-Theotokis, S. and Spinellis, D. A survey of peer-to-
peer content distribution technologies. ACM Computing Surveys,
36(4): 335-371, 2004.

[4] Busetta, P., Dona, A. and Nori, M. Channeled Multicast for Group
Communications. In Proc. 1st Int’l Joint Conf. on Autonomous
Agents and MultiAgent Systems (AAMAS’02), ACM Press, pp. 1280-
1287, 2002.

[5] Caromel, D., di Costanzo, A. and Mathieu, C. Peer-to-peer for com-
putational grids: mixing clusters and desktop machines. Parallel
Computing, Elsevier, 33(4-5): 275-288, 2007.

[6] Clark, J. and DeRose, S. XML Path Language (XPath) Version 1.0,
W3C Recommendation, 1999.

[7] Cooney, D., Dumas, M. and Roe, P. GPSL: a programming language
for service implementation. In Proc. 9th Int'l Conf. on Fundamental
Approaches to Software Engineering (FASE’6), Springer-Verlag,
LNCS 3922: 3-17, 2006.

[8] Desai, N., Mallya, A.U., Chopra, A.K. and Singh, M.P. Interaction
protocols as design abstractions for business processes. IEEE Trans.
on Software Engineering, 31(12): 1015-1027, 2005.

[9] Doi, T., Tahara, Y. and Honiden, S. IOM/T: an interaction descrip-
tion language for multi-agent systems. In Proc. 4th Int'l Joint Conf.
on Autonomous Agent and Multi-Agent Systems (AAMAS’05), ACM
Press, pp. 778-785, 2005.

[10] Eugster, P., Felber, P., Guerraoui, R. and Kermarrec, A. The many
faces of publish/subscribe. ACM Computing Surveys, 35(2): 114–131,
2003.

[11] Florescu, D., Grünhagen, A. and Kossmann, D. XL: an XML pro-
gramming language for Web service specification and composition.
Computer Networks, Elsevier, 42(5): 641-660, 2003.

[12] Gong, L. JXTA: a network programming environment. IEEE Internet
Computing, 5(3): 88-95, 2001.

[13] Huhns, M.N. Interaction-Oriented Programming. In Proc. 1st Int’l
Workshop on Agent-Oriented Software Engineering (AOSE'00),
Springer-Verlag, LNCS 1957: 29-44, 2000.

[14] Jennings, N.R. An agent-based approach for building complex soft-
ware systems. Comm. ACM, 44(4): 35-41, 2001.

[15] Kaneko, Y., Harumoto, K. and et al. A Location-Based Peer-to-Peer
Network for Context-Aware Services in a Ubiquitous Environment.
In Proc. 2005 IEEE/IPSJ Int'l Symp. on Applications and the Internet
(SAINT'05) Workshops, IEEE CS Press, pp. 208-211, 2005.

[16] Killian, C., Anderson, J.W., Braud, R., Jhala, R. and Vahdat, A.
Mace: language support for building distributed systems. In Proc.
2007 ACM SIGPLAN Conf. on Programming Language Design and
Implementation (PLDI’07), pp. 179-188, 2007.

[17] Li, D., Lu, X. and Wu, J. FISSIONE: a scalable constant degree and
low congestion DHT scheme based on Kautz graphs. In Proc. 24th
Annual Joint Conf. of the IEEE Computer and Comm. Societies (IN-
FOCOMM’05), IEEE CS Press, pp. 1677-1688, 2005.

[18] Lu, X., Wang, H. and Wang, J. Internet-based virtual computing
environment (iVCE): concepts and architecture. Science in China
(Series F), Springer-Verlag, 49(6): 681-701, 2006.

[19] Paurobally, S. and Jennings, N.R. Protocol engineering for web ser-
vices conversations. Engineering Applications of Artificial Intelli-
gence, Elsevier B.V., 18(2):237-254, 2005.

[20] Platon, E., Mamei, M., Sabouret, N., Honiden, S. and Parunak,
H.V.D. Mechanisms for environments in multi-agent systems: survey
and opportunities. Autonomous Agents and Multi-Agent Systems,
Springer-Verlag, 14(1): 31-47, 2007.

[21] Stoica, I., Morris, R., Karger, D., Kaashoek, M.F. and Balakrishnan,
H. Chord: A Scalable Peer-to-Peer Lookup Service for Internet Ap-
plications. In Proc. 2001 Conf. on Applications, Technologies, Archi-
tectures, and Protocols for Computer Comm. (SIGCOMM'01), ACM
Press, pp. 149-160, 2001.

[22] Wang, J., Shen, R. and Zhu, H. Agent-oriented programming based
on SLABS. In Proc. 29th Annual Int'l Computer Software and Appli-
cations Conf. (COMPSAC’05), IEEE CS Press, pp. 127-132, 2005.

[23] Welsh, M., Culler, D. and Brewer, E. SEDA: an architecture for well-
conditioned, scalable internet services. In Proc. ACM Symposium on
Operating Systems Principles (SOSP'01), ACM Press, pp. 230-243,
2001.

[24] Zheng, Z. and Lyu, M.R. WS-DREAM: A Distributed Reliability
Assessment Mechanism for Web Services. In Proc. 38th Annual
IEEE/IFIP Int'l Conf. on Dependable Systems and Networks
(DSN'08), IEEE CS Press, pp. 392-397, 2008.

[25] Zhu, Y. and Hu, Y. Ferry: a P2P-based architecture for content-based
publish/subscribe services. IEEE Trans. on Parallel and Distributed
Systems, 18(5): 672-685, 2007.

	Abstract

	1. Introduction

	2. Owlet

	2.1 Event-driven interactions

	2.2 Conversations

	2.3 Resource pooling

	3. Owlet Implementation

	3.1 Event-driven interactions

	3.2 Conversations

	3.3 Resource pooling

	4. Experiments

	4.1 Constructing a peer-to-peer file sharing application

	4.2 Experimenting fault tolerance and load balancing

	5. Related Work

	6. Conclusion and Future Work

	References

Dear Mr. Rui Shen:

I am sorry to inform you that the following submission

was not selected by the program committee to appear at

PLDI 2009:

 Owlet: Event-based Interaction Language for

 Constructing Large-Scale Distributed Systems

The selection process was very competitive. Due to time

and space limitations, we could only choose a small number

of the submitted papers to appear on the program. Nonetheless,

I still hope you can attend the conference.

I have enclosed the reviewer comments for your perusal. Keep in mind that the

program committee added and changed many reviews to better reflect the

discussion at the program committee meeeting. So be sure to read the current

reviews in case they contain new feedback for you.

If you have any additional questions, please feel free

to get in touch.

Best Regards,

Amer Diwan, Program Chair

PLDI 2009

==

PLDI 2009 Reviews for Submission #112

==

Title: Owlet: Event-based Interaction Language for Constructing Large-Scale Distributed Systems

Authors: Rui Shen, Ji Wang, Siqi Shen, Shengdong Zhang and Hua Fan

==

 REVIEWER #1

==

Reviewer's Scores

 Evaluation: B

 Novelty: B

 Convincing: B

 Worth solving: B

 Confidence: Z

Summary

This paper presents a language and programming model the simplifies the development of applications on top of a distributed content-based publish/subscribe platform. Owlet programs, which describe the protocol between distributed components using a role-based approach, are compiled down into Java code and merged with back-end components written in Java. The paper evaluates Owlet by showing how to develop three distributed applications.

Strength

The paper presents a rather intuitive language for specifying the interactions of distributed applications. The most interesting concept introduced in the paper is the notion of conversations which allow the modeling of some form of state.

Weakness

Contribution 1 seems to be a rather straightforward mapping of a publish/subscribe API into a language. Contribution 3 looks a bit like an ad-hoc solution and would benefit from a stronger motivation, comparison to existing approaches to fault-tolerance, and evaluation.

Comments

The paper could be denser, and the remaining space could be used to provide a

more complete picture of the language and its runtime system. The paper is

touching on many things, but the different aspects are not always covered in

enough depth: While the entire syntax of the language is given, several aspects

of the language are not discussed, e.g. the nesting introduced with

conversations opens some questions: Which conversation is concluded (innermost,

outer, all)? Which of multiple matching rules fire (innermost, outer, all)?

Also, which rule fires if a more general pattern and e.g. a pattern involving

"self" both match?

The specific approach to resource pooling seems a bit like an ad-hoc extension.

It is not treated in much depth (e.g. no example program is shown, the syntax

in Figure 8 does not seem to include that feature, no comparison to other

approaches).

The evaluation of Owlet, consisting of the three applications mentioned (file

sharing, web crawling, prime number checking -- characterize them in a table),

could even better contrast the Owlet-based approach to a more traditional

approach. For example, each of the applications could be characterized (# of

lines of code, # of roles/rules/conversations/events in Owlet, # of distinct

"message types" in traditional approach). Moreover, the cost of Owlet (e.g.

lines of code) should be explicitly shown. And, given that you claim that Owlet

improves upon traditional approaches to programming distributed applications,

you could also compare the two approaches in terms of programmer effort (hours

for Owlet development vs. hours for traditional development).

Minor points:

Section 3: "dissembled" (= "concealed"; you probably meant something else,

maybe "disassembled"?)

You may want to check out the PIM programming model

(http://portal.acm.org/citation.cfm?id=1411739). It's not the same as the one

you propose, and it is not really necessary to mention it in related work, but

it's an interesting approach that also is different from traditional approaches

to distributed programming.

==

 REVIEWER #2

==

Reviewer's Scores

 Evaluation: B

 Novelty: B

 Convincing: B

 Worth solving: B

 Confidence: Z

Summary

This paper presents a domain-specific language (Owlet) for writing

distributed peer-to-peer applications. The language provides a

publish-and-subscribe programming model in which the programmer

specifies event-driven rules to describe interactions between

loosely-coupled agents. The runtime provides fault tolerance and load

balancing.

Strength

Describes a new domain-specific language that simplifies the

co-ordination aspect of peer-to-peer applications.

Weakness

The paper demonstrates the language on only two applications; more

applications would strengthen the paper.

Comments

This paper presents a DSL for writing peer-to-peer internet

applications. The DSL makes it easier for programmers to build

applications based on an event publish/subscribe model. From the

example file sharing program and the experience rewriting a web

crawler program presented in this paper, this DSL can significantly

improve the productivity of programmers writing distributed

peer-to-peer applications on the internet. I thought this was a

reasonable DSL paper for PLDI. The main weakness of the paper is that

it applies the language to only two applications. Demonstrating the

language on a wider set of programs would have strenghtened the

paper's claims.

==

 REVIEWER #3

==

Reviewer's Scores

 Evaluation: C

 Novelty: C

 Convincing: C

 Worth solving: C

 Confidence: Y

Summary

The paper describes a programming language and system for orchestrating communications over the internet and provides an example of its use. The experimental results demonstrate that the language can be used to write fault-tolerant and publish/subscribe event-driven applications in fewer lines of code.

Strength

The design of the language is pretty well described. The results show that the language does indeed allow for more concise code.

Weakness

There was no apparent motivation for the design of the language. No empirical comparison was done with other languages that serve the same purpose. The design is also not particularly expressive.

Comments

The language described is yet another internet application orchestration

language. It builds on ideas from \pi-calculus and C\omega, as well as

web-services and BPEL. The authors claim that it seamlessly integrates

with

the implementation language (Java), even though there is a known impedance

mismatch with the data format used by Owlet (XML).

I was at first confused by the transition from the code in Figure 5 to the code

in Figure 6 -- it was not obvious that the definition of the request() event

from Figure 4 also needed to change. Stating that would have been helpful for

the exposition.

The authors claim that the conversion from Java to XML and vice versa is

"straight forward" [sic]. It isn't. See, for example,

http://homepages.cwi.nl/~ralf/xo-impedance-mismatch/ .

The described scheme for propagating publish/subscribe events leaves doubts as

to its efficiency. The paper presents no empirical measurements for the number

of messages, nor any analytic limits on the amount of communication.

It seems to me that there are severe limitations in the design of resource

pooling. For example, the language does not seem to be able to handle

applications where the input from multiple resource-pooled clients is actually

desired -- only one client returns the input, and the rest are terminated. The

procedure for obtaining a globally unique number of the resource pool is not

described. Is synchronization required, or is the agent id used to construct

the resource pool id? Is the resource pool id in the response visible to the

programmer, and if so, how is the programmer to interpret it? Does the

programmer have to explicitly handle cancellation messages, of is that done

automatically by the compiler? If the former, does an event get handled

while

another is processed, and how do the concurrent bits of code interact?

If the

latter, how can the programmer prevent some code from being canceled (e.g., to

make sure partial computation never occurs)?

The semantics for timeout (silent) events is somewhat inconsistent, because in

all other cases, the event parameter is matched with the actual value attached

to the event, but in the case of timeout it is an input parameter (unless the

silent event is generated with the value of the timeout, which implies another

set of problems altogether).

Finally, there are some typos in the paper, of which the most noteworthy are in

section 3.3 (in the description of Figure 11).

==

 REVIEWER #4

==

Reviewer's Scores

 Evaluation: D

 Novelty: C

 Convincing: C

 Worth solving: B

 Confidence: Y

Summary

The paper describes a distributed programming model ("Owlet") for

constructing scalable data- or compute-intensive applications from

internet resources. Application code is split into inter-node

coordination logic, expressed in the Owlet itself, and node-local

"business logic", expressed via Java beans. The key constructs in

Owlet are a publish-subscribe mechanism for raising and processing

parametrized events, a notion of "conversation" for correlating

dataflow between particular instances of the same event, and an

ability to define "resource pools" by requiring that an event be

processed by a minimum number of subscribers. The paper introduces

the concepts informally, via examples, and evaluates the performance

of two options for implementing its resource pooling technique.

Strength

While there are many existing programming models for building

large-scale distributed applications (many of which are cited by the

authors), I am unaware of any that use exactly the same set of

features present in Owlet. The examples are helpful, and the file

sharing example is complete enough for me to believe that the

implemented system is usable in practice.

Weakness

Since there is a great deal of existing work in this area, it's

critical that you make the case that Owlet is _superior to_ previous

work in some respect. Unfortunately, your comparison to related work

is based solely on enumerating (often minor) _differences_, not making

distinctions based on criteria of importance to application

developers. Some possible criteria for comparison are fault

tolerance, programmer productivity, runtime performance,

simplicity/elegance, or ability to reason about or analyze program

behavior. Moreover, while you mentioned a fair amount of related

work, you fail to mention the large body of work on tuple-space models

(e.g., Linda), which are closely related to your approach. Your

experiments are based solely on comparing two versions of your own

runtime and don't help the reader understand how your approach relates

to previous work, and the experiments themselves lack sufficient

details to be reproducible. Finally, the runtime architecture of your

system, e.g., the interplay between the overlay network and Owlet

event processing code, is described in insufficient detail for a

reader to be able to fully understand the performance and semantic

implications of the design.

Comments

Major Comments

The basic ingredients present in Owlet are well known:

Publish-subscribe as a distributed task coordination paradigm was

popularized by Gelernter's Linda and a long succession of "tuple

space" languages (curiously, you don't cite any of this work); WS-BPEL

popularized the notion of conversational correlation; and peer-to-peer

systems have long had a variety of mechanisms for defining and

managing resource bounds. The basic notion of separating coordination

logic from business logic is also well established (see, e.g., the

proceedings of the Coordination conference). So the bar for novelty

in this area is very high, and as mentioned above, I don't feel that

you've done a good enough job differentiating your work from its

predecessors.

While most of your examples are reasonably clear, I was puzzled by a

number of semantic and pragmatic issues, which might have been cleared

up if the semantics of the language or its runtime architecture had

been defined more clearly:

- Is it necessary to deploy the same Owlet program to all nodes, or

 can different programs on distinct nodes interact provided that they

 raise or respond to complementary events?

- What exactly is the semantics of event processing? Are all events

 queued, and processed serially, including 'self' events?

- It is evident from the 'synchronized' block in Fig. 13(c) that some

 data can be shared by multiple threads. What is the granularity of

 sharing? What defines a thread? How are threads allocated to

 processing resources?

- Fig. 11 implies that there is some mechanism for indicating that a

 resource is no longer needed (since a "response" event causes

 resources to be released). What is the mechanism for delimiting the

 scope of a resource, or defining a "response"?

Other major issues:

- If I understand Fig. 13(c) correctly, it appears that the data

 structure representing a file is locked whenever a single piece is

 requested. While you state that this is mechanism is used to

 prevent the same piece from being requested from multiple providers,

 this would also appear to require that pieces be accessed serially,

 rather than in parallel. If this is correct, isn't this a flaw in

 your file sharing code? If this incorrect, I'd appreciate an

 explanation of why the synchronized block doesn't serialize access

 to pieces.

- I'd like to better understand how your distributed prime number

 checking algorithm works. Presumably, you define subtasks that are

 checked in parallel, but there is no description of how the subtasks

 are defined, or how owlet accommodates data- or computational task

 partitioning in general; e.g., is the granularity of tasks adjusted

 depending on resource availability?

- Section 4.2: You don't explain in any detail what QoS properties are

 measured in your experiment or how they are measured. You don't

 explain how the overlay network topology is determined, whether the

 topology can change dynamically depending on node availability, and

 if so, the degree to which the overlay network or P2P layers affect

 the performance of the application independent of the way resources

 are scheduled. Finally, what is the notion of "success" used in

 Fig. 14? Without details of this nature, your experiments are of

 limited value since they're not reproducible.

- Your examples use fixed resource bounds. Surely a more useful

 system would allow applications to utilize all available resources

 via some mechanism for varying resource bounds. Does Owlet

 accommodate varying resource bounds? Is it easy to define tasks

 whose granularity varies depending on resource bounds?

- I found the use of overloaded event names in your examples very

 confusing. E.g., Fig. 13 has a nullary 'request' event _and_ a

 unary 'request' event _and_ a binary 'request' event.

- It appears that an Owlet user has to reason about data defined its

 three languages: its own schema language, Java, and XML. Wouldn't

 it be advantageous to reduce this to 1 (or maybe 2 if Java is

 essential) model(s)?

- p. 5, para. 8, "When subscribing to the event service, the

 subscription is delegated to a peer by randomly [choosing] a

 property name...": I really didn't understand how this works. It's

 important to explain this better, since the the interaction between

 your model and the underlying overlay network is critical to

 understanding its performance characteristics and semantics.¯

Minor Comments

- Fig. 2: Your list syntax is somewhat unfortunate, since it's

 identical to C pointer syntax.

- Fig. 5: The handler code for the unary 'request' event raises a

 binary 'request' event. While the full example in Fig. 13 clarifies

 what's going on to some degree, this example is mysterious/

 confusing in isolation.

- p. 5, para. 4, "dissembled" -> "disassembled"

- Fig. 13(b): Why is the "[0]" needed in the XPath code on lines 12

 and 20? More generally, you should explain how XPath queries map to

 your resource schemas.

- Fig. 13(c): If I understand this code correctly, the code for

 handling a response to the 'request' event in line 46 is in line 32

 (handler for the 'provide' event). While this is (I think) correct,

 it's rather confusing. The more general confusion is that

 sequential code is intermingled with event-driven code, making the

 flow of control harder to understand.

- p. 8, para. 5: How does a "user" issue a 'share' event?

- p. 8, para. 8: How many lines of code is the JavaBeans business

 logic for your web crawler? Even if the original code was Java, the

 translation to the Beans framework could cause the code to _expand_,

 not contract.

- p. 9: Fig. 15(c) does not have the smallest task submission

 interval---15(d) does.

==

 REVIEWER #5

==

Reviewer's Scores

 Evaluation: C

 Novelty: C

 Convincing: C

 Worth solving: B

 Confidence: Y

Summary

The paper presents an overview of Owlet, a language for building a large-scale distributed application. Owlet adopts content-based event publish/subscribe interaction scheme, introduces conversations to correlate events and rules into a common context, and provides resource pooling for fault tolerance and load balancing. The paper describes an implementation of Owlet, presents experience with constructing two applications in Owlet, and shows experimental results about fault tolerance and load balancing using a distributed prime number checking program.

Strength

The paper proposes a new language, Owlet, for building a large-scale distributed application, and presents experience with constructing two applications in Owlet, one (a peer-to-peer file sharing application) in details and the other (a web page crawler application) briefly, suggesting that Owlet would facilitate the construction of large-scale distributed systems.

Weakness

- The authors do not demonstrate the value of Owlet in a "large-scale distributed over the Internet infrastructure".

- The authors focus, in Experiments, on how easily applications are written in Owlet, but does not discuss how the Owlet applications perform.

Comments

The Experiments section mentions that the resource aggregation logic of a

peer-to-peer file sharing application are 140-line long when written in Owlet,

and that the interaction logic of a distributed Web page crawler application is

160-line long in Owlet. These certainly demonstrate some value of Owlet,

However, since the design and implementation of a programming language

involves pros and cons, it would be necessary to show that they could achieve

these smaller lines without sacrificing other important things too much. Thus,

it would be good to discuss the performance impact of their approach. More

concretely, it would be good to compare the performance of the original Web

crawler application and the version rewritten in Owlet. In addition, it

would be good to do the same for a peer-to-peer file sharing application by

rewriting some existing one in Owlet rather than building it from the scratch

as they do in Section 4.1.

Owlet is meant for building large scale distributed applications over the

Internet infrastructure. I think that running an Owlet application requires

its runtime to be deployed at machines over the Internet infrastructure Doses

this pose any challenge? One way to respond to this would be to discuss real

experience with running Owlet applications over the Internet infrastructure

The paper is well written. However, it seems to me that it sometimes repeats

the same claims too many times. For instance, it includes six occurrences of "a

certain degree of load balancing", and thus repeats the claim associated with

this phrases as many times.

3.2 Conversations: The description of this subsection suggests that the

overhead of creating and concluding a conversation would not be small. In

addition, Figure 13 suggests that conversations be created frequently. What

would be the overhead of managing conversations?

3.2 Conversations, 3rd paragraph, "This allows events in a conversation to

trigger rules in its parent conversations.": It would be good to include a

good example which shows the rationale or the benefits of this design choice.

In addition, this matching semantics is a design matter rather than an

implementation matter. Thus, this should be described in Section 2.2.

3.3 Resource pooling, 4th paragraph, "Node 2 and Node N are employed, while

Node 1 is cancelled.": This should be "Node 1 and Node N are employed, while

Node 2 is cancelled."

4.2 Experimenting fault tolerance and load balancing: Making a claim based on

only the results from a distributed prime number checking program would not be

very convincing.

On motivation and expressiveness

 Owlet is an interaction language to describe resource aggregation logic, which is usually scattered when building large-scale distributed systems. By separating the concerns into the resource aggregation logic and business logic, distributed applications can be more easily built and maintained. Owlet¡¯s expressiveness focuses on describing interactions among distributed nodes, rather than the business logic delegated to component technologies.

On efficiency of publish/subscribe

 Owlet uses content-based event publish/subscribe interaction scheme, which brings full decoupling between distributed nodes. While bringing more powerful means of describing interactions, publish/subscribe surely induces more communications. However, many researches are working on implementing efficient publish/subscribe, especially those based on P2P overlay networks.

On conversations in Owlet

 Conversations can be nested, and the conclude operation will close the conversation in which the keyword occurs, and together with all its sub-conversation. Rules are guarded and fired concurrently, i.e. all of the multiple matching rules will fire concurrently. The overhead of managing conversation constitutes of object creation and rule subscribing, or object deleting and rule unsubscribing. So the overhead are mainly determined by the efficiency of publish/subscribe.

On resource pooling in Owlet

 Providing Internet resources are abundant and yet dynamic, Owlet uses redundancy resources to overcome the dynamic of individual resources. By seamlessly integrating with publish/subscribe and conversation, resource pools are used by Owlet to form a relatively stable resource view for programmers. Each pool has a unique id generated as UUID, which is not visible to programmers. Each pool is attached to a conversation, and multiple clients can be employed before the conversation is concluded. Pool cancellation is done automatically by the runtime to send interrupt messages to Java threads, which give the control to component developers to decide whether partial computation is allowed.

On semantics of timeout/silent events

 Each of the event parameters in a pattern of a rule can be either a free variable of a specified type or one with concrete value. In the former case, the free variable will be matched to the actual value attached to the event; in the latter case, e.g. the silent/timeout events, the actual value attached to the event must be equal to the concrete value.

On application and performance of Owlet

 The distributed Web crawler is ported from its Java implementation, which takes 2 Owlet developers and 3 of its original developers one week. Other Owlet applications, e.g. instant messaging, file sharing and etc. usually take one developer 1-3 days to finish the prototypes.

 For the distributed Web crawler, only the interaction logic is rewritten, and the rest of the application is used as JavaBeans to do the business logic (crawling). The Owlet code has performance overhead than the original code. Since the business logic usually consumes much more time than the interaction logic, the whole system has little performance decline. And we have deployed the application across three cities over the Internet and it scales well with satisfying performance.

 Owlet¡¯s XML/Java conversion is rather proprietary and much easier than a universal X/O converter.

